Automatic Navbox Generation by Interpretable Clustering over Linked Entities

Chenhao Xie, Lihan Chen, Jiaqing Liang, Kezun Zhang, Yanghua Xiao, Hanghang Tong, Haixun Wang, Wei Wang
{"title":"Automatic Navbox Generation by Interpretable Clustering over Linked Entities","authors":"Chenhao Xie, Lihan Chen, Jiaqing Liang, Kezun Zhang, Yanghua Xiao, Hanghang Tong, Haixun Wang, Wei Wang","doi":"10.1145/3132847.3132899","DOIUrl":null,"url":null,"abstract":"Rare efforts have been devoted to generating the structured Navigation Box (Navbox) for Wikipedia articles. A Navbox is a table in Wikipedia article page that provides a consistent navigation system for related entities. Navbox is critical for the readership and editing efficiency of Wikipedia. In this paper, we target on the automatic generation of Navbox for Wikipedia articles. Instead of performing information extraction over unstructured natural language text directly, an alternative avenue is explored by focusing on a rich set of semi-structured data in Wikipedia articles: linked entities. The core idea of this paper is as follows: If we cluster the linked entities and interpret them appropriately, we can construct a high-quality Navbox for the article entity. We propose a clustering-then-labeling algorithm to realize the idea. Experiments show that the proposed solutions are effective. Ultimately, our approach enriches Wikipedia with 1.95 million new Navboxes of high quality.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3132899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Rare efforts have been devoted to generating the structured Navigation Box (Navbox) for Wikipedia articles. A Navbox is a table in Wikipedia article page that provides a consistent navigation system for related entities. Navbox is critical for the readership and editing efficiency of Wikipedia. In this paper, we target on the automatic generation of Navbox for Wikipedia articles. Instead of performing information extraction over unstructured natural language text directly, an alternative avenue is explored by focusing on a rich set of semi-structured data in Wikipedia articles: linked entities. The core idea of this paper is as follows: If we cluster the linked entities and interpret them appropriately, we can construct a high-quality Navbox for the article entity. We propose a clustering-then-labeling algorithm to realize the idea. Experiments show that the proposed solutions are effective. Ultimately, our approach enriches Wikipedia with 1.95 million new Navboxes of high quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
链接实体上可解释聚类的自动导航框生成
很少有人致力于为维基百科文章生成结构化导航框(Navbox)。Navbox是Wikipedia条目页面中的一个表,它为相关实体提供一致的导航系统。Navbox对维基百科的读者和编辑效率至关重要。在本文中,我们的目标是为维基百科条目自动生成导航框。我们没有直接对非结构化的自然语言文本执行信息提取,而是通过关注Wikipedia文章中丰富的半结构化数据集来探索另一种方法:链接实体。本文的核心思想是:如果我们对链接实体进行聚类并进行适当的解释,我们就可以为文章实体构建一个高质量的导航框。我们提出了一种聚类-标记算法来实现这一思想。实验表明,所提出的解决方案是有效的。最终,我们的方法为维基百科提供了195万个高质量的新导航框。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query and Animate Multi-attribute Trajectory Data HyPerInsight: Data Exploration Deep Inside HyPer Algorithmic Bias: Do Good Systems Make Relevant Documents More Retrievable? NeuPL: Attention-based Semantic Matching and Pair-Linking for Entity Disambiguation Health Forum Thread Recommendation Using an Interest Aware Topic Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1