A Comparative Analysis of Classic and Deep Learning Models for Inferring Gender and Age of Twitter Users

Yaguang Liu, Lisa Singh, Zeina Mneimneh
{"title":"A Comparative Analysis of Classic and Deep Learning Models for Inferring Gender and Age of Twitter Users","authors":"Yaguang Liu, Lisa Singh, Zeina Mneimneh","doi":"10.5220/0010559500480058","DOIUrl":null,"url":null,"abstract":"In order for social scientists to use social media as a source for understanding human behavior and public opinion, they need to understand the demographic characteristics of the population participating in the conversation. What proportion are female? What proportion are young? While previous literature has investigated this problem, this work presents a larger scale study that investigates inference techniques for predicting age and gender using Twitter data. We consider classic text features used in previous work and introduce new ones. Then we use a range of learning approaches from classic machine learning models to deep learning ones to understand the role of different language representations for demographic inference. On a data set created from Wikidata, we compare the value of different feature sets with different algorithms. In general, we find that classic models using statistical features and unigrams perform well. Neural networks also perform well, particularly models using sentence embeddings, e.g. a Siamese network configuration with attention to tweets and user biographies. The differences are marginal for age, but more significant for gender. In other words, it is reasonable to use simpler, interpretable models for some demographic inference tasks (like age). However, using richer language model is important for gender, highlighting the varying role language plays for demographic inference on social media.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"88 1","pages":"48-58"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010559500480058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In order for social scientists to use social media as a source for understanding human behavior and public opinion, they need to understand the demographic characteristics of the population participating in the conversation. What proportion are female? What proportion are young? While previous literature has investigated this problem, this work presents a larger scale study that investigates inference techniques for predicting age and gender using Twitter data. We consider classic text features used in previous work and introduce new ones. Then we use a range of learning approaches from classic machine learning models to deep learning ones to understand the role of different language representations for demographic inference. On a data set created from Wikidata, we compare the value of different feature sets with different algorithms. In general, we find that classic models using statistical features and unigrams perform well. Neural networks also perform well, particularly models using sentence embeddings, e.g. a Siamese network configuration with attention to tweets and user biographies. The differences are marginal for age, but more significant for gender. In other words, it is reasonable to use simpler, interpretable models for some demographic inference tasks (like age). However, using richer language model is important for gender, highlighting the varying role language plays for demographic inference on social media.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推特用户性别和年龄推断的经典和深度学习模型比较分析
为了让社会科学家利用社交媒体作为理解人类行为和公众舆论的来源,他们需要了解参与对话的人口的人口特征。女性的比例是多少?年轻人的比例是多少?虽然以前的文献已经研究了这个问题,但这项工作提出了一个更大规模的研究,研究了使用Twitter数据预测年龄和性别的推断技术。我们考虑了以前工作中使用的经典文本特征,并引入了新的文本特征。然后,我们使用从经典机器学习模型到深度学习模型的一系列学习方法来理解不同语言表示在人口统计推断中的作用。在一个由维基数据创建的数据集上,我们比较了不同算法下不同特征集的值。一般来说,我们发现使用统计特征和单图的经典模型表现良好。神经网络也表现得很好,特别是使用句子嵌入的模型,例如关注tweet和用户传记的暹罗网络配置。年龄上的差异很小,但性别上的差异更大。换句话说,对于某些人口统计推断任务(如年龄),使用更简单、可解释的模型是合理的。然而,使用更丰富的语言模型对性别很重要,突出了语言在社交媒体上的人口统计推断中所起的不同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GAN-Based LiDAR Intensity Simulation Improving Primate Sounds Classification using Binary Presorting for Deep Learning Towards exploring adversarial learning for anomaly detection in complex driving scenes A Study of Neural Collapse for Text Classification Using Artificial Intelligence to Reduce the Risk of Transfusion Hemolytic Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1