首页 > 最新文献

News. Phi Delta Epsilon最新文献

英文 中文
GAN-Based LiDAR Intensity Simulation 基于gan的激光雷达强度模拟
Pub Date : 2023-11-26 DOI: 10.1007/978-3-031-39059-3_28
Richard Marcus, Felix Gabel, Niklas Knoop, M. Stamminger
{"title":"GAN-Based LiDAR Intensity Simulation","authors":"Richard Marcus, Felix Gabel, Niklas Knoop, M. Stamminger","doi":"10.1007/978-3-031-39059-3_28","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_28","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"41 1","pages":"419-433"},"PeriodicalIF":0.0,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74545151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Primate Sounds Classification using Binary Presorting for Deep Learning 基于深度学习的二值预分类改进灵长类动物声音分类
Pub Date : 2023-06-28 DOI: 10.48550/arXiv.2306.16054
Michael Kolle, Steffen Illium, Maximilian Zorn, Jonas Nusslein, Patrick Suchostawski, Claudia Linnhoff-Popien
In the field of wildlife observation and conservation, approaches involving machine learning on audio recordings are becoming increasingly popular. Unfortunately, available datasets from this field of research are often not optimal learning material; Samples can be weakly labeled, of different lengths or come with a poor signal-to-noise ratio. In this work, we introduce a generalized approach that first relabels subsegments of MEL spectrogram representations, to achieve higher performances on the actual multi-class classification tasks. For both the binary pre-sorting and the classification, we make use of convolutional neural networks (CNN) and various data-augmentation techniques. We showcase the results of this approach on the challenging textit{ComparE 2021} dataset, with the task of classifying between different primate species sounds, and report significantly higher Accuracy and UAR scores in contrast to comparatively equipped model baselines.
在野生动物观察和保护领域,利用录音进行机器学习的方法正变得越来越流行。不幸的是,来自这一研究领域的可用数据集往往不是最佳的学习材料;样本可能被弱标记,长度不同或信噪比较差。在这项工作中,我们引入了一种广义方法,首先对MEL谱图表示的子段进行重新标记,以在实际的多类分类任务中获得更高的性能。对于二值预排序和分类,我们使用卷积神经网络(CNN)和各种数据增强技术。我们在具有挑战性的textit{ComparE 2021}数据集上展示了这种方法的结果,该数据集的任务是对不同灵长类动物的声音进行分类,并报告了与相对配备的模型基线相比显着更高的准确性和UAR分数。
{"title":"Improving Primate Sounds Classification using Binary Presorting for Deep Learning","authors":"Michael Kolle, Steffen Illium, Maximilian Zorn, Jonas Nusslein, Patrick Suchostawski, Claudia Linnhoff-Popien","doi":"10.48550/arXiv.2306.16054","DOIUrl":"https://doi.org/10.48550/arXiv.2306.16054","url":null,"abstract":"In the field of wildlife observation and conservation, approaches involving machine learning on audio recordings are becoming increasingly popular. Unfortunately, available datasets from this field of research are often not optimal learning material; Samples can be weakly labeled, of different lengths or come with a poor signal-to-noise ratio. In this work, we introduce a generalized approach that first relabels subsegments of MEL spectrogram representations, to achieve higher performances on the actual multi-class classification tasks. For both the binary pre-sorting and the classification, we make use of convolutional neural networks (CNN) and various data-augmentation techniques. We showcase the results of this approach on the challenging textit{ComparE 2021} dataset, with the task of classifying between different primate species sounds, and report significantly higher Accuracy and UAR scores in contrast to comparatively equipped model baselines.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"29 1","pages":"19-34"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86999976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards exploring adversarial learning for anomaly detection in complex driving scenes 探索对抗学习在复杂驾驶场景中的异常检测
Pub Date : 2023-06-17 DOI: 10.48550/arXiv.2307.05256
Nouran Habib, Yunsu Cho, Abhishek Buragohain, A. Rausch
One of the many Autonomous Systems (ASs), such as autonomous driving cars, performs various safety-critical functions. Many of these autonomous systems take advantage of Artificial Intelligence (AI) techniques to perceive their environment. But these perceiving components could not be formally verified, since, the accuracy of such AI-based components has a high dependency on the quality of training data. So Machine learning (ML) based anomaly detection, a technique to identify data that does not belong to the training data could be used as a safety measuring indicator during the development and operational time of such AI-based components. Adversarial learning, a sub-field of machine learning has proven its ability to detect anomalies in images and videos with impressive results on simple data sets. Therefore, in this work, we investigate and provide insight into the performance of such techniques on a highly complex driving scenes dataset called Berkeley DeepDrive.
许多自动驾驶系统(as)之一,如自动驾驶汽车,执行各种安全关键功能。许多这些自主系统利用人工智能(AI)技术来感知其环境。但是这些感知组件无法被正式验证,因为这些基于ai的组件的准确性高度依赖于训练数据的质量。因此,基于机器学习(ML)的异常检测(一种识别不属于训练数据的数据的技术)可以作为这种基于ai的组件在开发和运行期间的安全测量指标。对抗性学习是机器学习的一个子领域,它已经证明了它在简单数据集上检测图像和视频异常的能力,并取得了令人印象深刻的结果。因此,在这项工作中,我们调查并深入了解了这些技术在高度复杂的驾驶场景数据集(称为Berkeley DeepDrive)上的性能。
{"title":"Towards exploring adversarial learning for anomaly detection in complex driving scenes","authors":"Nouran Habib, Yunsu Cho, Abhishek Buragohain, A. Rausch","doi":"10.48550/arXiv.2307.05256","DOIUrl":"https://doi.org/10.48550/arXiv.2307.05256","url":null,"abstract":"One of the many Autonomous Systems (ASs), such as autonomous driving cars, performs various safety-critical functions. Many of these autonomous systems take advantage of Artificial Intelligence (AI) techniques to perceive their environment. But these perceiving components could not be formally verified, since, the accuracy of such AI-based components has a high dependency on the quality of training data. So Machine learning (ML) based anomaly detection, a technique to identify data that does not belong to the training data could be used as a safety measuring indicator during the development and operational time of such AI-based components. Adversarial learning, a sub-field of machine learning has proven its ability to detect anomalies in images and videos with impressive results on simple data sets. Therefore, in this work, we investigate and provide insight into the performance of such techniques on a highly complex driving scenes dataset called Berkeley DeepDrive.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"67 1","pages":"35-55"},"PeriodicalIF":0.0,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82852584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Survey on Reinforcement Learning and Deep Reinforcement Learning for Recommender Systems 推荐系统的强化学习和深度强化学习研究综述
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_26
M. Rezaei, Nasseh Tabrizi
{"title":"A Survey on Reinforcement Learning and Deep Reinforcement Learning for Recommender Systems","authors":"M. Rezaei, Nasseh Tabrizi","doi":"10.1007/978-3-031-39059-3_26","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_26","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"108 1","pages":"385-402"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77435558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research Data Reusability with Content-Based Recommender System 基于内容的推荐系统研究数据可重用性
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_10
M. A. Yazdi, Marius Politze, Benedikt Heinrichs
{"title":"Research Data Reusability with Content-Based Recommender System","authors":"M. A. Yazdi, Marius Politze, Benedikt Heinrichs","doi":"10.1007/978-3-031-39059-3_10","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_10","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"46 1","pages":"143-156"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80897284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TaxoSBERT: Unsupervised Taxonomy Expansion Through Expressive Semantic Similarity TaxoSBERT:基于表达语义相似性的无监督分类法扩展
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_20
Daniele Margiotta, D. Croce, Roberto Basili
{"title":"TaxoSBERT: Unsupervised Taxonomy Expansion Through Expressive Semantic Similarity","authors":"Daniele Margiotta, D. Croce, Roberto Basili","doi":"10.1007/978-3-031-39059-3_20","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_20","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"32 1","pages":"295-307"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87493833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Prediction of Survival Status in Patients Undergoing Cardiac Catheterization Using a Joint Modeling Approach 使用关节建模方法动态预测心导管置入术患者的生存状态
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_4
Derun Xia, Y. Ko, Shivang R. Desai, A. Quyyumi
{"title":"Dynamic Prediction of Survival Status in Patients Undergoing Cardiac Catheterization Using a Joint Modeling Approach","authors":"Derun Xia, Y. Ko, Shivang R. Desai, A. Quyyumi","doi":"10.1007/978-3-031-39059-3_4","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_4","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"13 1","pages":"56-70"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87774444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Automated Dual-Module Pipeline for Stock Prediction: Integrating N-Perception Period Power Strategy and NLP-Driven Sentiment Analysis for Enhanced Forecasting Accuracy and Investor Insight 股票预测的自动化双模块管道:整合n感知周期功率策略和nlp驱动的情绪分析,以提高预测准确性和投资者洞察力
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_6
Siddhant Singh, Archit Thanikella
{"title":"An Automated Dual-Module Pipeline for Stock Prediction: Integrating N-Perception Period Power Strategy and NLP-Driven Sentiment Analysis for Enhanced Forecasting Accuracy and Investor Insight","authors":"Siddhant Singh, Archit Thanikella","doi":"10.1007/978-3-031-39059-3_6","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_6","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"24 1","pages":"84-100"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82985383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GAN-Powered Model &Landmark-Free Reconstruction: A Versatile Approach for High-Quality 3D Facial and Object Recovery from Single Images 氮化镓驱动的模型和无地标重建:从单个图像中恢复高质量3D面部和物体的通用方法
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_27
Michael Danner, P. Huber, Muhammad Awais, Matthias Rätsch, J. Kittler
{"title":"GAN-Powered Model &Landmark-Free Reconstruction: A Versatile Approach for High-Quality 3D Facial and Object Recovery from Single Images","authors":"Michael Danner, P. Huber, Muhammad Awais, Matthias Rätsch, J. Kittler","doi":"10.1007/978-3-031-39059-3_27","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_27","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"27 1","pages":"403-418"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81529910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generative Adversarial Networks for Domain Translation in Unpaired Breast DCE-MRI Datasets 非配对乳腺DCE-MRI数据集领域翻译的生成对抗网络
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_25
Antonio Galli, M. Gravina, S. Marrone, Carlo Sansone
{"title":"Generative Adversarial Networks for Domain Translation in Unpaired Breast DCE-MRI Datasets","authors":"Antonio Galli, M. Gravina, S. Marrone, Carlo Sansone","doi":"10.1007/978-3-031-39059-3_25","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_25","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"11 1","pages":"370-384"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74291899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
News. Phi Delta Epsilon
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1