Improving Primate Sounds Classification using Binary Presorting for Deep Learning

Michael Kolle, Steffen Illium, Maximilian Zorn, Jonas Nusslein, Patrick Suchostawski, Claudia Linnhoff-Popien
{"title":"Improving Primate Sounds Classification using Binary Presorting for Deep Learning","authors":"Michael Kolle, Steffen Illium, Maximilian Zorn, Jonas Nusslein, Patrick Suchostawski, Claudia Linnhoff-Popien","doi":"10.48550/arXiv.2306.16054","DOIUrl":null,"url":null,"abstract":"In the field of wildlife observation and conservation, approaches involving machine learning on audio recordings are becoming increasingly popular. Unfortunately, available datasets from this field of research are often not optimal learning material; Samples can be weakly labeled, of different lengths or come with a poor signal-to-noise ratio. In this work, we introduce a generalized approach that first relabels subsegments of MEL spectrogram representations, to achieve higher performances on the actual multi-class classification tasks. For both the binary pre-sorting and the classification, we make use of convolutional neural networks (CNN) and various data-augmentation techniques. We showcase the results of this approach on the challenging \\textit{ComparE 2021} dataset, with the task of classifying between different primate species sounds, and report significantly higher Accuracy and UAR scores in contrast to comparatively equipped model baselines.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"29 1","pages":"19-34"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.16054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of wildlife observation and conservation, approaches involving machine learning on audio recordings are becoming increasingly popular. Unfortunately, available datasets from this field of research are often not optimal learning material; Samples can be weakly labeled, of different lengths or come with a poor signal-to-noise ratio. In this work, we introduce a generalized approach that first relabels subsegments of MEL spectrogram representations, to achieve higher performances on the actual multi-class classification tasks. For both the binary pre-sorting and the classification, we make use of convolutional neural networks (CNN) and various data-augmentation techniques. We showcase the results of this approach on the challenging \textit{ComparE 2021} dataset, with the task of classifying between different primate species sounds, and report significantly higher Accuracy and UAR scores in contrast to comparatively equipped model baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的二值预分类改进灵长类动物声音分类
在野生动物观察和保护领域,利用录音进行机器学习的方法正变得越来越流行。不幸的是,来自这一研究领域的可用数据集往往不是最佳的学习材料;样本可能被弱标记,长度不同或信噪比较差。在这项工作中,我们引入了一种广义方法,首先对MEL谱图表示的子段进行重新标记,以在实际的多类分类任务中获得更高的性能。对于二值预排序和分类,我们使用卷积神经网络(CNN)和各种数据增强技术。我们在具有挑战性的\textit{ComparE 2021}数据集上展示了这种方法的结果,该数据集的任务是对不同灵长类动物的声音进行分类,并报告了与相对配备的模型基线相比显着更高的准确性和UAR分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GAN-Based LiDAR Intensity Simulation Improving Primate Sounds Classification using Binary Presorting for Deep Learning Towards exploring adversarial learning for anomaly detection in complex driving scenes A Study of Neural Collapse for Text Classification Using Artificial Intelligence to Reduce the Risk of Transfusion Hemolytic Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1