Francois Gaie Levrel, N. C. Foraison, P. Gillery, V. Delatour
{"title":"Establishing SI-Traceability of Nanoparticle Enumeration Techniques: A Case Study on Electrospray Differential Mobility Analysis","authors":"Francois Gaie Levrel, N. C. Foraison, P. Gillery, V. Delatour","doi":"10.4172/2155-9872.1000370","DOIUrl":null,"url":null,"abstract":"Nanostructured materials and their specific physical and chemical properties have been widely used over these past decades for a large range of applications, from electronics to energy, catalysis or medicine. However, for process optimization in the context of industrial production, air quality survey, biomedical applications and almost all areas where nanoparticles are involved, thorough and accurate characterization of these materials is needed [1-3]. According to the European recommendation 2011/696/EU, a nanomaterial is “a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate, and where for 50% or more of the particles in the number size distribution, one or more external dimension is in the size range 1 nm-100 nm” [4]. As evidenced by this definition, two major parameters are to be measured in order to characterize a nanostructured material and to determine whether it is considered nano or not: the particle size and the corresponding particle number concentration. However, the classification of a material should be independent of the method(s) chosen for its characterization, which implies that methods must provide comparable results.","PeriodicalId":14865,"journal":{"name":"Journal of analytical and bioanalytical techniques","volume":"223 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical and bioanalytical techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9872.1000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nanostructured materials and their specific physical and chemical properties have been widely used over these past decades for a large range of applications, from electronics to energy, catalysis or medicine. However, for process optimization in the context of industrial production, air quality survey, biomedical applications and almost all areas where nanoparticles are involved, thorough and accurate characterization of these materials is needed [1-3]. According to the European recommendation 2011/696/EU, a nanomaterial is “a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate, and where for 50% or more of the particles in the number size distribution, one or more external dimension is in the size range 1 nm-100 nm” [4]. As evidenced by this definition, two major parameters are to be measured in order to characterize a nanostructured material and to determine whether it is considered nano or not: the particle size and the corresponding particle number concentration. However, the classification of a material should be independent of the method(s) chosen for its characterization, which implies that methods must provide comparable results.