Friction Analysis in Needle Insertion Into Soft Tissue

Yingda Hu, Murong Li, Yong Lei
{"title":"Friction Analysis in Needle Insertion Into Soft Tissue","authors":"Yingda Hu, Murong Li, Yong Lei","doi":"10.1115/msec2021-63715","DOIUrl":null,"url":null,"abstract":"\n As one of the preoperative diagnostic methods, needle insertion is widely used for its safety and effectiveness. Recently, robotic needle insertion systems have been under active developments. Hence needle insertion experiments are essential for system verifications, in which the interactions between needle and tissue is a major focus for needle-tissue interactive models, and the friction between the needle and tissue is an important factor. In these experiments, the friction coefficient can be affected by many factors, such as insertion speed, needle-tissue deformation and contact forces. In this paper, to study and analyze the influence of various variables on friction force and friction coefficient, three variables, i.e., tissue pressure on needle, needle insertion velocity and Young’s modulus of the tissue, are systematically studied by constructing a testbed, in which the radial surface friction is converted into equivalent plane friction based on the assumption that the distribution of the normal force and friction force on the needle is uniform for the whole needle outer surface. The experimental results show that the variation range of friction coefficient is 0.122–0.341. The friction coefficient decreases with the increase of pressure and increases with the increase of velocity, while Young’s modulus have a small effect on the friction coefficient.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/msec2021-63715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the preoperative diagnostic methods, needle insertion is widely used for its safety and effectiveness. Recently, robotic needle insertion systems have been under active developments. Hence needle insertion experiments are essential for system verifications, in which the interactions between needle and tissue is a major focus for needle-tissue interactive models, and the friction between the needle and tissue is an important factor. In these experiments, the friction coefficient can be affected by many factors, such as insertion speed, needle-tissue deformation and contact forces. In this paper, to study and analyze the influence of various variables on friction force and friction coefficient, three variables, i.e., tissue pressure on needle, needle insertion velocity and Young’s modulus of the tissue, are systematically studied by constructing a testbed, in which the radial surface friction is converted into equivalent plane friction based on the assumption that the distribution of the normal force and friction force on the needle is uniform for the whole needle outer surface. The experimental results show that the variation range of friction coefficient is 0.122–0.341. The friction coefficient decreases with the increase of pressure and increases with the increase of velocity, while Young’s modulus have a small effect on the friction coefficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针刺入软组织的摩擦分析
针刺作为术前诊断方法之一,因其安全、有效而被广泛应用。近年来,机器人插针系统得到了积极的发展。因此,插针实验对系统验证至关重要,其中针与组织的相互作用是针-组织交互模型的主要关注点,而针与组织之间的摩擦是一个重要因素。在这些实验中,摩擦系数可以受到许多因素的影响,如插入速度、针组织变形和接触力。为了研究和分析各种变量对摩擦力和摩擦系数的影响,本文通过搭建实验平台,系统研究了组织对针的压力、针的插针速度和组织的杨氏模量三个变量。其中,假设针上的法向力和摩擦力在整个针外表面的分布均匀,将径向表面摩擦转化为等效平面摩擦。试验结果表明,摩擦系数的变化范围为0.122 ~ 0.341。摩擦系数随压力的增加而减小,随速度的增加而增大,而杨氏模量对摩擦系数的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
期刊最新文献
Ultra-wideband Waveguide-coupled Photodiodes Heterogeneously Integrated on a Thin-film Lithium Niobate Platform Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network Front Matter: Volume 12507 Research on key technology of compound polishing of off-axis parabolic mirror Precision polishing of the mandrel for x-ray grazing incidence mirrors in the Einstein probe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1