MULTI-CRITERIA NUMERICAL OPTIMIZATION OF MECHANICAL PROPERTIES IN ULTRASONIC WELDING PROCESS PARAMETERS OF PVC-COATED HYBRID TEXTILES FOR WEATHER PROTECTION

M. Hussen, Y. Kyosev, Kathrin Pietsch, Jessica Boll, A. Kabish
{"title":"MULTI-CRITERIA NUMERICAL OPTIMIZATION OF MECHANICAL PROPERTIES IN ULTRASONIC WELDING PROCESS PARAMETERS OF PVC-COATED HYBRID TEXTILES FOR WEATHER PROTECTION","authors":"M. Hussen, Y. Kyosev, Kathrin Pietsch, Jessica Boll, A. Kabish","doi":"10.15240/tul/008/2023-2-007","DOIUrl":null,"url":null,"abstract":"A series of research was carried out to determine the correlation between ultrasonic welding process parameters and weld seam mechanical properties. However, multi-objective numerical optimization of coated hybrid textiles for weather protection has not been addressed. To ensure a comprehensive evaluation of ultrasonic weld seams, the research investigates the optimal solution of the multi-objective function of ultrasonic welding process parameters and formulates a single criteria objective function. Lapped and superimposed types of seams were applied based on 33 factorial designs of experiments for 6 and 12 mm welding widths. Single-criteria objective functions instead of three independent problems were developed as a generalized utility function. A single-criteria optimization method was introduced through predetermined weight and normalization within the range of acceptable/unacceptable values. Numerical and graphical optimization methods were also applied to determine possible optimal solutions through generalized utility functions. The best optimal value of the generalized utility function (0.670425 and 0.944374) was attained at welding speed (2 and 2.01564 m/min), power (93.756 and 117.973 W), and pressure force (198.803 and 239.756 N) of 6 and 12 mm welding widths, respectively. The acceptable range of satisfactory values was determined for the roof and wall of awnings and camping tents through standard, in which seam performance level indicated. Nonlinear quadratic numerical models were formulated to estimate the generalized utility function, and their results were close to the regressed diagonal line against the actual points. The statistical analysis was shown a statistically significant effect of welding process parameters on the generalized utility function.","PeriodicalId":12123,"journal":{"name":"Fibres and Textiles in Eastern Europe","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibres and Textiles in Eastern Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15240/tul/008/2023-2-007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A series of research was carried out to determine the correlation between ultrasonic welding process parameters and weld seam mechanical properties. However, multi-objective numerical optimization of coated hybrid textiles for weather protection has not been addressed. To ensure a comprehensive evaluation of ultrasonic weld seams, the research investigates the optimal solution of the multi-objective function of ultrasonic welding process parameters and formulates a single criteria objective function. Lapped and superimposed types of seams were applied based on 33 factorial designs of experiments for 6 and 12 mm welding widths. Single-criteria objective functions instead of three independent problems were developed as a generalized utility function. A single-criteria optimization method was introduced through predetermined weight and normalization within the range of acceptable/unacceptable values. Numerical and graphical optimization methods were also applied to determine possible optimal solutions through generalized utility functions. The best optimal value of the generalized utility function (0.670425 and 0.944374) was attained at welding speed (2 and 2.01564 m/min), power (93.756 and 117.973 W), and pressure force (198.803 and 239.756 N) of 6 and 12 mm welding widths, respectively. The acceptable range of satisfactory values was determined for the roof and wall of awnings and camping tents through standard, in which seam performance level indicated. Nonlinear quadratic numerical models were formulated to estimate the generalized utility function, and their results were close to the regressed diagonal line against the actual points. The statistical analysis was shown a statistically significant effect of welding process parameters on the generalized utility function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚氯乙烯涂层复合织物超声波焊接工艺参数力学性能多准则数值优化
为了确定超声焊接工艺参数与焊缝力学性能之间的关系,进行了一系列的研究。然而,涂层混合纺织品的多目标数值优化问题尚未得到解决。为保证超声焊缝的综合评价,研究了超声焊接工艺参数多目标函数的最优解,制定了单一准则目标函数。采用33因子试验设计,对6和12 mm焊接宽度的焊缝进行搭接和叠加。将单准则目标函数取代三个独立的问题,发展为广义效用函数。引入了一种单准则优化方法,通过在可接受/不可接受范围内确定权重并进行归一化。数值和图形优化方法也被应用于通过广义效用函数确定可能的最优解。在焊接宽度为6和12 mm时,焊接速度为2和2.01564 m/min,功率为93.756和117.973 W,压力为198.803和239.756 N,广义效用函数的最优值为0.670425和0.944374。通过标准确定了遮阳篷和露营帐篷的屋面和墙面的满意值的可接受范围,其中指出了接缝性能水平。建立了广义效用函数的非线性二次数值模型,其结果接近于实际点的回归对角线。统计分析表明,焊接工艺参数对广义效用函数的影响具有统计学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ANTIMICROBIAL ACTIVITY OF COTTON FIBRES TREATED WITH PARTICLES EXTRACTED FROM CITRUS PLANTS: A REVIEW MULTI-CRITERIA NUMERICAL OPTIMIZATION OF MECHANICAL PROPERTIES IN ULTRASONIC WELDING PROCESS PARAMETERS OF PVC-COATED HYBRID TEXTILES FOR WEATHER PROTECTION STATE PROBLEM OF BALANCING SEWING LINE OF INDUSTRIAL KNITTED PRODUCTS TEAR AND TENSILE STRENGTH OF 100% COTTON WOVEN FABRICS’ BASIC STRUCTURES: REGRESSION MODELLING ELECTRIC HEATING CLOTHING FOR MOTORCYCLISTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1