Air Pollution Method: A new method based on ionic liquid passed on mesoporous silica nanoparticles for removal of manganese dust in the workplace air

Parisa Paydar, A. Zarandi
{"title":"Air Pollution Method: A new method based on ionic liquid passed on mesoporous silica nanoparticles for removal of manganese dust in the workplace air","authors":"Parisa Paydar, A. Zarandi","doi":"10.24200/AMECJ.V2.I01.52","DOIUrl":null,"url":null,"abstract":"Chronic effect of manganese exposure to humans caused the dysfunction of nervous system. An applied sorbent based on hydrophobic ionic liquid passed on mesoporous silica nanoparticles was used for adsorption/removal of manganese dust (Mn) from workplace air by solid phase adsorption method. In bench scale set up, 5 mL of standard solution of nitrate and oxide of Mn (0.2-5 mg L-1) was used for generation of manganese dust in pure air by drying procedure, and then was passed through column of IL/MSNPs by SKC pump with flow rate  of 200-500 mL min-1 by SKC pump. The Mn particles separated from column of IL/MSNPs by irrigation of nitric acid solution before determined by F-AAS/ET-AAS. In optimized conditions, the adsorption capacity of MSNPs and IL/MSNPs for Mn removal from air in batch system (1 Li) was obtained 118.5 mg g-1 and 216.2 mg g-1, respectively.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods in Environmental Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/AMECJ.V2.I01.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Chronic effect of manganese exposure to humans caused the dysfunction of nervous system. An applied sorbent based on hydrophobic ionic liquid passed on mesoporous silica nanoparticles was used for adsorption/removal of manganese dust (Mn) from workplace air by solid phase adsorption method. In bench scale set up, 5 mL of standard solution of nitrate and oxide of Mn (0.2-5 mg L-1) was used for generation of manganese dust in pure air by drying procedure, and then was passed through column of IL/MSNPs by SKC pump with flow rate  of 200-500 mL min-1 by SKC pump. The Mn particles separated from column of IL/MSNPs by irrigation of nitric acid solution before determined by F-AAS/ET-AAS. In optimized conditions, the adsorption capacity of MSNPs and IL/MSNPs for Mn removal from air in batch system (1 Li) was obtained 118.5 mg g-1 and 216.2 mg g-1, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空气污染法:离子液体通过介孔二氧化硅纳米颗粒去除工作场所空气中锰尘的新方法
锰对人体的慢性影响可引起神经系统功能障碍。以介孔二氧化硅纳米颗粒为载体,采用疏水离子液体为吸附剂,采用固相吸附法对工作场所空气中的锰尘进行吸附去除。在实验装置中,取硝酸和锰氧化物标准溶液(0.2-5 mg L-1) 5ml在纯空气中干燥生成锰尘,然后用SKC泵通过IL/ msnp柱,流量200-500 mL min-1。硝酸溶液冲洗将Mn颗粒从IL/MSNPs柱中分离出来,然后用F-AAS/ET-AAS测定。在优化条件下,MSNPs和IL/MSNPs的吸附量分别为118.5 mg g-1和216.2 mg g-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Determine methylene blue based on carbon paste electrode modified with nanoparticles of nickel oxide-nitrogen carbon quantum dots and carbon structures by cyclic voltammetry A review: Exploratory analysis of recent advancement in green analytical chemistry application the Determination and evaluation of trace elements in the blood of radiography workers using graphite furnace atomic absorption spectrometry Chromium desalinization using novel chitosan functionalized iron oxide- biochar composites: Analysis, synthesis, characterization and adsorption performance Solid phase-fabrication of multi-walled carbon nanotubes and their derivatives for efficient extraction and analysis of Bismarck Brown-Y Dye from aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1