Lattice-matched solar cells with 40% average efficiency in pilot production and a roadmap to 50%

D. Aiken, E. Dons, Sang-Soo Je, N. Miller, F. Newman, P. Patel, J. Spann
{"title":"Lattice-matched solar cells with 40% average efficiency in pilot production and a roadmap to 50%","authors":"D. Aiken, E. Dons, Sang-Soo Je, N. Miller, F. Newman, P. Patel, J. Spann","doi":"10.1109/pvsc-vol2.2012.6656724","DOIUrl":null,"url":null,"abstract":"A commercial lattice-matched InGaP/InGaAs/Ge solar cell has reached an average efficiency of 40% at 500 kW/m2. The design changes that lead to this result are discussed. These data are complemented with a presentation of the latest new solar cell development results from the laboratory. Inverted metamorphic multijunction solar cells have been prototyped with 42.4% efficiency at 325 suns for concentrator applications and 33.6% efficiency at 1 sun AM0 for space applications. Six subcell devices are now under development. These results are used, along with other experimental data and other industrial constraints, as input to a computer model to predict what practical efficiency might be achievable with this device approach. The computer model suggests that 45% and 50% efficiencies are technologically feasible with a three-junction and five-junction device, respectively, at an irradiance of 500 kW/m2 and 25 °C using known materials, device architectures, and manufacturing methods.","PeriodicalId":6420,"journal":{"name":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","volume":"42 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pvsc-vol2.2012.6656724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A commercial lattice-matched InGaP/InGaAs/Ge solar cell has reached an average efficiency of 40% at 500 kW/m2. The design changes that lead to this result are discussed. These data are complemented with a presentation of the latest new solar cell development results from the laboratory. Inverted metamorphic multijunction solar cells have been prototyped with 42.4% efficiency at 325 suns for concentrator applications and 33.6% efficiency at 1 sun AM0 for space applications. Six subcell devices are now under development. These results are used, along with other experimental data and other industrial constraints, as input to a computer model to predict what practical efficiency might be achievable with this device approach. The computer model suggests that 45% and 50% efficiencies are technologically feasible with a three-junction and five-junction device, respectively, at an irradiance of 500 kW/m2 and 25 °C using known materials, device architectures, and manufacturing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
点阵匹配的太阳能电池在试点生产中平均效率为40%,路线图为50%
商用晶格匹配的InGaP/InGaAs/Ge太阳能电池在500kw /m2时达到了40%的平均效率。讨论了导致这一结果的设计变更。这些数据与实验室最新的新型太阳能电池开发结果的介绍相辅相成。倒置变质多结太阳能电池的原型在325个太阳下的效率为42.4%,在1个太阳AM0的空间应用中效率为33.6%。目前正在开发六种亚单元装置。这些结果与其他实验数据和其他工业限制一起被用作计算机模型的输入,以预测这种设备方法可能实现的实际效率。计算机模型表明,使用已知材料、器件架构和制造方法,在500 kW/m2和25°C的辐照度下,三结和五结器件的效率分别为45%和50%,在技术上是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Initial operating experience of the 1.2-MW La Ola photovoltaic system The impact of selenisation on damp heat degradation of the CIGS back contact molybdenum Remote plasma chemical vapor deposition for high-efficiency ultra-thin ∼25-microns crystalline Si solar cells Study of point defects in ns pulsed-laser annealed CuInSe2 thin films Optical monitoring and control of three-stage coevaporated Cu(In1−xGax)Se2 by real-time spectroscopic ellipsometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1