Multi-view Object Segmentation in Space and Time

Abdelaziz Djelouah, Jean-Sébastien Franco, Edmond Boyer, F. Clerc, P. Pérez
{"title":"Multi-view Object Segmentation in Space and Time","authors":"Abdelaziz Djelouah, Jean-Sébastien Franco, Edmond Boyer, F. Clerc, P. Pérez","doi":"10.1109/ICCV.2013.328","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of object segmentation in multiple views or videos when two or more viewpoints of the same scene are available. We propose a new approach that propagates segmentation coherence information in both space and time, hence allowing evidences in one image to be shared over the complete set. To this aim the segmentation is cast as a single efficient labeling problem over space and time with graph cuts. In contrast to most existing multi-view segmentation methods that rely on some form of dense reconstruction, ours only requires a sparse 3D sampling to propagate information between viewpoints. The approach is thoroughly evaluated on standard multi-view datasets, as well as on videos. With static views, results compete with state of the art methods but they are achieved with significantly fewer viewpoints. With multiple videos, we report results that demonstrate the benefit of segmentation propagation through temporal cues.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"33 1","pages":"2640-2647"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

In this paper, we address the problem of object segmentation in multiple views or videos when two or more viewpoints of the same scene are available. We propose a new approach that propagates segmentation coherence information in both space and time, hence allowing evidences in one image to be shared over the complete set. To this aim the segmentation is cast as a single efficient labeling problem over space and time with graph cuts. In contrast to most existing multi-view segmentation methods that rely on some form of dense reconstruction, ours only requires a sparse 3D sampling to propagate information between viewpoints. The approach is thoroughly evaluated on standard multi-view datasets, as well as on videos. With static views, results compete with state of the art methods but they are achieved with significantly fewer viewpoints. With multiple videos, we report results that demonstrate the benefit of segmentation propagation through temporal cues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间和时间的多视图目标分割
在本文中,我们解决了当同一场景的两个或多个视点可用时,多个视点或视频中的目标分割问题。我们提出了一种在空间和时间上传播分割相干信息的新方法,从而允许在完整的集合上共享一张图像中的证据。为了达到这个目的,分割被视为一个单一的有效的标记问题在空间和时间上与图切割。与大多数现有的依赖于某种形式的密集重建的多视图分割方法相比,我们的方法只需要一个稀疏的3D采样来在视点之间传播信息。该方法在标准的多视图数据集以及视频上进行了彻底的评估。使用静态视图,结果与最先进的方法竞争,但它们是用更少的视点实现的。通过多个视频,我们报告了通过时间线索进行分割传播的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1