{"title":"A variable gain CMOS amplifier with exponential gain control","authors":"Christopher W. Mangelsdorf","doi":"10.1109/VLSIC.2000.852875","DOIUrl":null,"url":null,"abstract":"A variable gain amplifier architecture suitable for foundry CMOS is constructed using linearized transconductance blocks. The use of a four-transistor transconductance cell allows for wider gain range and larger signal swing under low supply conditions than the simple differential pair used in previous work. Experimental results with 0.6 /spl mu/m CMOS show -5 to 35 dB gain and 20 MHz bandwidth at 21 mW.","PeriodicalId":6361,"journal":{"name":"2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103)","volume":"123 1","pages":"146-149"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2000.852875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59
Abstract
A variable gain amplifier architecture suitable for foundry CMOS is constructed using linearized transconductance blocks. The use of a four-transistor transconductance cell allows for wider gain range and larger signal swing under low supply conditions than the simple differential pair used in previous work. Experimental results with 0.6 /spl mu/m CMOS show -5 to 35 dB gain and 20 MHz bandwidth at 21 mW.