Electronic Transport Through Organophosphonate-Grafted Bacteriorhodopsin Films on Titanium Nitride

D. Chryssikos, J. Dlugosch, Jerry A Fereiro, T. Kamiyama, M. Sheves, D. Cahen, M. Tornow
{"title":"Electronic Transport Through Organophosphonate-Grafted Bacteriorhodopsin Films on Titanium Nitride","authors":"D. Chryssikos, J. Dlugosch, Jerry A Fereiro, T. Kamiyama, M. Sheves, D. Cahen, M. Tornow","doi":"10.1109/NANO51122.2021.9514351","DOIUrl":null,"url":null,"abstract":"Understanding the charge transport properties of proteins at the molecular scale is crucial for the development of novel bioelectronic devices. In this contribution, we report on the preparation and electrical characterization of thin films of bacteriorhodopsin grafted on the surface of titanium nitride via aminophosphonate linkers. Thickness analysis using atomic force microscopy revealed a protein film thickness of 8.2±1.5 nm, indicating the formation of a protein bilayer. Electrical measurements were carried out in the dry state, in a vertical arrangement with a eutectic gallium-indium (EGaIn) or an evaporated Ti/Au top contact. DC current-voltage measurements yielded comparable effective tunneling decay constants $\\beta\\sim 0.13\\mathrm{A}^{-1}$ for the EGaIn top contact and $\\sim 0.15\\mathrm{A}^{-1}$ for the Ti/Au top contact. The results presented herein may establish a novel platform for studying charge transport via protein molecules in a solid-state device configuration.","PeriodicalId":6791,"journal":{"name":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","volume":"35 1","pages":"389-392"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO51122.2021.9514351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Understanding the charge transport properties of proteins at the molecular scale is crucial for the development of novel bioelectronic devices. In this contribution, we report on the preparation and electrical characterization of thin films of bacteriorhodopsin grafted on the surface of titanium nitride via aminophosphonate linkers. Thickness analysis using atomic force microscopy revealed a protein film thickness of 8.2±1.5 nm, indicating the formation of a protein bilayer. Electrical measurements were carried out in the dry state, in a vertical arrangement with a eutectic gallium-indium (EGaIn) or an evaporated Ti/Au top contact. DC current-voltage measurements yielded comparable effective tunneling decay constants $\beta\sim 0.13\mathrm{A}^{-1}$ for the EGaIn top contact and $\sim 0.15\mathrm{A}^{-1}$ for the Ti/Au top contact. The results presented herein may establish a novel platform for studying charge transport via protein molecules in a solid-state device configuration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮化钛上有机膦酸接枝细菌视紫红质薄膜的电子传输
在分子尺度上了解蛋白质的电荷传输特性对于开发新型生物电子器件至关重要。在这篇文章中,我们报道了通过氨基膦酸盐连接剂在氮化钛表面接枝细菌视紫红质薄膜的制备和电特性。原子力显微镜厚度分析显示,蛋白质膜厚度为8.2±1.5 nm,表明形成了蛋白质双分子层。电测量是在干燥状态下进行的,在垂直排列的共晶镓铟(EGaIn)或蒸发的Ti/Au顶部触点。直流电流-电压测量得到了EGaIn顶触点的等效隧道衰减常数$\beta\sim 0.13\mathrm{A}^{-1}$和Ti/Au顶触点的等效隧道衰减常数$\sim 0.15\mathrm{A}^{-1}$。本文的研究结果可能为在固态器件结构中研究蛋白质分子的电荷传输建立一个新的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copper-MWCNT Composite: A Solution to Breakdown in Copper Interconnects Si Nanopillar/SiGe Composite Structure for Thermally Managed Nano-devices Reservoir Computing System using Biomolecular Memristor Electrothermal Parameters of Graphene Nanoplatelets Films High-performance VOx-based memristors with ultralow switching voltages prepared at room temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1