A Web-Based Decision Support System of Patient Time Prediction Using Iterative Dichotomiser 3 Algorithm

A. E. Permanasari, Abd. Dzuljalali Wal Ikram, Marcus Nurtiantara Aji, H. A. Nugroho, Intan Sulistyaningrum Sakkinah
{"title":"A Web-Based Decision Support System of Patient Time Prediction Using Iterative Dichotomiser 3 Algorithm","authors":"A. E. Permanasari, Abd. Dzuljalali Wal Ikram, Marcus Nurtiantara Aji, H. A. Nugroho, Intan Sulistyaningrum Sakkinah","doi":"10.1109/ICITEED.2019.8929969","DOIUrl":null,"url":null,"abstract":"The development of the supporting system is an essential component at the hospital. In general, animal hospitals have a similar form of service in human hospitals. The problem is arising because of limited inpatient room of the animal hospital. It can directly affect the quality of service to patients, especially if the number of patients is booming. The implementation of the Decision Support System (DSS) can enhance hospital services section by predicting patient recovery time. It is needed to help staff in arranging available inpatient rooms. We utilize the Iterative Dichotomiser 3 (ID3) algorithm to build a decision tree which is then translated into classification rules. ID3 algorithm is used to classify the variables contained in a patient’s medical record dataset. The results yielded a classification of estimated recovery time into three categories, namely 1-5 days, 6-10 days, and >10 days with 60% testing accuracy. Finally, we develop a prototype based decision tree to display the computation. The system can assist the administrative staff in maximizing inpatient room management, while animal owners can estimate the costs needed.","PeriodicalId":6598,"journal":{"name":"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"26 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2019.8929969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The development of the supporting system is an essential component at the hospital. In general, animal hospitals have a similar form of service in human hospitals. The problem is arising because of limited inpatient room of the animal hospital. It can directly affect the quality of service to patients, especially if the number of patients is booming. The implementation of the Decision Support System (DSS) can enhance hospital services section by predicting patient recovery time. It is needed to help staff in arranging available inpatient rooms. We utilize the Iterative Dichotomiser 3 (ID3) algorithm to build a decision tree which is then translated into classification rules. ID3 algorithm is used to classify the variables contained in a patient’s medical record dataset. The results yielded a classification of estimated recovery time into three categories, namely 1-5 days, 6-10 days, and >10 days with 60% testing accuracy. Finally, we develop a prototype based decision tree to display the computation. The system can assist the administrative staff in maximizing inpatient room management, while animal owners can estimate the costs needed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迭代二分法的基于web的患者时间预测决策支持系统
支持系统的发展是医院必不可少的组成部分。一般来说,动物医院的服务形式与人类医院类似。这个问题是由于动物医院的病房有限而产生的。它会直接影响到对患者的服务质量,尤其是在患者数量激增的情况下。决策支援系统(DSS)的实施,可透过预测病人的康复时间,提升医院服务水平。它需要帮助工作人员安排可用的住院病房。我们利用迭代二分器3 (ID3)算法构建决策树,然后将其转化为分类规则。使用ID3算法对患者病历数据集中包含的变量进行分类。结果将估计的恢复时间分为3类,即1-5天、6-10天和10天,测试精度为60%。最后,我们开发了一个基于原型的决策树来显示计算结果。该系统可以帮助管理人员最大限度地管理住院室,而动物主人可以估计所需的费用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Simulation of Three Phase Squirrel Cage Induction Motor in Low Voltage System 48V 50Hz 3Hp for Electric Golf Cart Study on Detection Mechanism of HF Radar for Early Tsunami Detection and Comparison to Other Tsunami Sensors Research On The Impact of Knowledge Management Practice for Ogranizational Performance: Indonesian Electronic Power Company A Virtual Spring Damper Method for Formation Control of the Multi Omni-directional Robots in Cooperative Transportation Power Allocation for Group LDS-OFDM in Underlay Cognitive Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1