{"title":"Analytical model for determining the leakage albedo component for a direct cylindrical channel passing through the nuclear reactor protective layer","authors":"K. S. Kupriyanov, Vladimir V. Pereverzentsev","doi":"10.3897/NUCET.7.68941","DOIUrl":null,"url":null,"abstract":"The task of determining the radiation situation, including neutron and gamma-quantum flux density, radiation spectrum, specific volumetric activity of radioactive gases in the air, etc. behind the protective composition having inhomogeneities, has always been important in matters of radiation safety. One of the ways to solve the problem of determining gamma radiation fluxes was to divide the total ionizing radiation flux into four components: line-of-sight (LOS), leakage, line-of-sight albedo, and leakage albedo, and obtain an analytical solution for each component. The first three components have been studied in detail in relation to simple geometries and there are analytical solutions for them, but there is no such a solution for the last component. The authors of this work have derived an analytical representation for the leakage albedo component, which, in contrast to numerical methods (such as Monte Carlo methods), makes it possible to analyze the effect of inhomogeneities in protective compositions on the radiation environment as well as to quickly obtain estimated values of fluxes and dose rates. Performing a component-by-component comparison, it becomes possible to single out the most significant mechanisms of the dose load formation behind the nuclear reactor protection, to draw conclusions about the effectiveness of design solutions in the protection design and to improve the protection at significantly lower computational costs.\n Finally, the authors present calculations for the four components of the total ionizing radiation flux for various parameters of the cylindrical inhomogeneity in the reactor protection. Based on the obtained values, conclusions are made about the importance of taking into account the leakage albedo component in the formation of the radiation situation behind the core vessel.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Energy and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/NUCET.7.68941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The task of determining the radiation situation, including neutron and gamma-quantum flux density, radiation spectrum, specific volumetric activity of radioactive gases in the air, etc. behind the protective composition having inhomogeneities, has always been important in matters of radiation safety. One of the ways to solve the problem of determining gamma radiation fluxes was to divide the total ionizing radiation flux into four components: line-of-sight (LOS), leakage, line-of-sight albedo, and leakage albedo, and obtain an analytical solution for each component. The first three components have been studied in detail in relation to simple geometries and there are analytical solutions for them, but there is no such a solution for the last component. The authors of this work have derived an analytical representation for the leakage albedo component, which, in contrast to numerical methods (such as Monte Carlo methods), makes it possible to analyze the effect of inhomogeneities in protective compositions on the radiation environment as well as to quickly obtain estimated values of fluxes and dose rates. Performing a component-by-component comparison, it becomes possible to single out the most significant mechanisms of the dose load formation behind the nuclear reactor protection, to draw conclusions about the effectiveness of design solutions in the protection design and to improve the protection at significantly lower computational costs.
Finally, the authors present calculations for the four components of the total ionizing radiation flux for various parameters of the cylindrical inhomogeneity in the reactor protection. Based on the obtained values, conclusions are made about the importance of taking into account the leakage albedo component in the formation of the radiation situation behind the core vessel.