Design and evaluation of a modular resonant switched capacitors equalizer for PV panels

S. Ben-Yaakov, Alon Blumenfeld, A. Cervera, M. Evzelman
{"title":"Design and evaluation of a modular resonant switched capacitors equalizer for PV panels","authors":"S. Ben-Yaakov, Alon Blumenfeld, A. Cervera, M. Evzelman","doi":"10.1109/ECCE.2012.6342262","DOIUrl":null,"url":null,"abstract":"A switched-capacitor based equalization scheme is proposed for overcoming the adverse effect of shaded panels in a serially connected PV array. The proposed solution is based on a modular approach, in which each two panels are connected to a resonant switched-capacitor converter. The distribution of currents and power extraction improvement have been derived and verified experimentally and design guidelines to meet desired power loss level requirements have been developed. The experimental equalizing module was designed for 185W PV panels and was found to boost the maximum available power by about 50% when interfaced with two serially connected PV panels under insolation ratios between 20% and 100%. The analytical, simulation and experimental results suggest that the proposed approach is effective in extracting all available power with relatively high efficiency.","PeriodicalId":6401,"journal":{"name":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"105 1","pages":"4129-4136"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2012.6342262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

A switched-capacitor based equalization scheme is proposed for overcoming the adverse effect of shaded panels in a serially connected PV array. The proposed solution is based on a modular approach, in which each two panels are connected to a resonant switched-capacitor converter. The distribution of currents and power extraction improvement have been derived and verified experimentally and design guidelines to meet desired power loss level requirements have been developed. The experimental equalizing module was designed for 185W PV panels and was found to boost the maximum available power by about 50% when interfaced with two serially connected PV panels under insolation ratios between 20% and 100%. The analytical, simulation and experimental results suggest that the proposed approach is effective in extracting all available power with relatively high efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏板模块化谐振开关电容均衡器的设计与评价
提出了一种基于开关电容的均衡方案,以克服串联光伏阵列中阴影板的不利影响。提出的解决方案是基于模块化的方法,其中每两个面板连接到一个谐振开关电容器转换器。通过实验验证了电流分布和功率提取的改进,并制定了满足所需功率损耗水平要求的设计准则。实验均衡器设计用于185W的光伏板,在光照比为20% ~ 100%的情况下,将两个串联的光伏板连接在一起,可将最大可用功率提高约50%。分析、仿真和实验结果表明,该方法能够以较高的效率提取所有可用功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alternative excitation strategies for a wound rotor synchronous machine drive Design of LCL filters in consideration of parameter variations for grid-connected converters Design, modelling and testing of a high speed induction machine drive A modified Boost topology with simultaneous AC and DC load Optimal zero-vector configuration for space vector modulated AC-DC matrix converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1