A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets

Bert Moons, M. Verhelst
{"title":"A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets","authors":"Bert Moons, M. Verhelst","doi":"10.1109/VLSIC.2016.7573525","DOIUrl":null,"url":null,"abstract":"A low-power precision-scalable processor for ConvNets or convolutional neural networks (CNN) is implemented in a 40nm technology. Its 256 parallel processing units achieve a peak 102GOPS running at 204MHz. To minimize energy consumption while maintaining throughput, this works is the first to both exploit the sparsity of convolutions and to implement dynamic precision-scalability enabling supply- and energy scaling. The processor is fully C-programmable, consumes 25-288mW at 204 MHz and scales efficiency from 0.3-2.6 real TOPS/W. This system hereby outperforms the state-of-the-art up to 3.9× in energy efficiency.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"501 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"149","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 149

Abstract

A low-power precision-scalable processor for ConvNets or convolutional neural networks (CNN) is implemented in a 40nm technology. Its 256 parallel processing units achieve a peak 102GOPS running at 204MHz. To minimize energy consumption while maintaining throughput, this works is the first to both exploit the sparsity of convolutions and to implement dynamic precision-scalability enabling supply- and energy scaling. The processor is fully C-programmable, consumes 25-288mW at 204 MHz and scales efficiency from 0.3-2.6 real TOPS/W. This system hereby outperforms the state-of-the-art up to 3.9× in energy efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于实时大规模卷积神经网络的0.3-2.6 TOPS/W精度可扩展处理器
采用40nm技术实现了用于卷积神经网络(CNN)的低功耗精密可扩展处理器。它的256个并行处理单元在204MHz时达到102GOPS的峰值。为了最大限度地减少能源消耗,同时保持吞吐量,这是第一个既利用卷积的稀疏性,又实现动态精确可扩展性,从而实现供应和能量缩放。该处理器完全采用c语言编程,在204 MHz时功耗为25-288mW,效率为0.3-2.6实际TOPS/W。该系统在能源效率方面优于最先进的系统,最高可达3.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A chopping switched-capacitor RF receiver with integrated blocker detection, +31dBm OB-IIP3, and +15dBm OB-B1dB A wireless power transfer system with enhanced response and efficiency by fully-integrated fast-tracking wireless constant-idle-time control for implants Adaptive clocking with dynamic power gating for mitigating energy efficiency & performance impacts of fast voltage droop in a 22nm graphics execution core A high-density CMOS multi-modality joint sensor/stimulator array with 1024 pixels for holistic real-time cellular characterization A microelectrode array with 8,640 electrodes enabling simultaneous full-frame readout at 6.5 kfps and 112-channel switch-matrix readout at 20 kS/s
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1