Dan Jin, Shengxi Jin, Yang Yu, Colin Lee, Jie Chen
{"title":"Classification of Cannabis Cultivars Marketed in Canada for Medical Purposes byQuantification of Cannabinoids and Terpenes Using HPLC-DAD and GC-MS","authors":"Dan Jin, Shengxi Jin, Yang Yu, Colin Lee, Jie Chen","doi":"10.4172/2155-9872.1000349","DOIUrl":null,"url":null,"abstract":"For over a century, research on cannabis has been hampered by its legal status as a narcotic. The recent legalization of cannabis for medical purposes in North America requires rigorous standardization of its phytochemical composition in the interest of consumer safety and medicinal efficacy. To utilize medicinal cannabis as a predictable medicine, it is crucial to classify hundreds of cultivars with respect to dozens of therapeutic cannabinoids and terpenes, as opposed to the current industrial or forensic classifications that only consider the primary cannabinoids tetrahydrocannabinol (THC) and cannabidiol (CBD). We have recently developed and validated analytical methods using high-pressure liquid chromatography (HPLC-DAD) to quantify cannabinoids and gas chromatography with mass spectroscopy (GC-MS) to quantify terpenes in cannabis raw material currently marketed in Canada. We classified 32 cannabis samples from two licensed producers into four clusters based on the content of 10 cannabinoids and 14 terpenes. The classification results were confirmed by cluster analysis and principal component analysis in tandem, which were distinct from those using only THC and CBD. Cannabis classification using a full spectrum of compounds will more closely meet the practical needs of cannabis applications in clinical research, insdustrial production, and patients’ self-production in Canada. As such, this holistic classification methodology will contribute to the standardization of commercially-available cannabis cultivars in support of a continuously growing market.","PeriodicalId":14865,"journal":{"name":"Journal of analytical and bioanalytical techniques","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical and bioanalytical techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9872.1000349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
For over a century, research on cannabis has been hampered by its legal status as a narcotic. The recent legalization of cannabis for medical purposes in North America requires rigorous standardization of its phytochemical composition in the interest of consumer safety and medicinal efficacy. To utilize medicinal cannabis as a predictable medicine, it is crucial to classify hundreds of cultivars with respect to dozens of therapeutic cannabinoids and terpenes, as opposed to the current industrial or forensic classifications that only consider the primary cannabinoids tetrahydrocannabinol (THC) and cannabidiol (CBD). We have recently developed and validated analytical methods using high-pressure liquid chromatography (HPLC-DAD) to quantify cannabinoids and gas chromatography with mass spectroscopy (GC-MS) to quantify terpenes in cannabis raw material currently marketed in Canada. We classified 32 cannabis samples from two licensed producers into four clusters based on the content of 10 cannabinoids and 14 terpenes. The classification results were confirmed by cluster analysis and principal component analysis in tandem, which were distinct from those using only THC and CBD. Cannabis classification using a full spectrum of compounds will more closely meet the practical needs of cannabis applications in clinical research, insdustrial production, and patients’ self-production in Canada. As such, this holistic classification methodology will contribute to the standardization of commercially-available cannabis cultivars in support of a continuously growing market.