{"title":"Experimental Study of Large-Scale Flow Structures in an Aneurysm","authors":"P. Yu, V. Durgesh","doi":"10.1115/FEDSM2018-83531","DOIUrl":null,"url":null,"abstract":"An aneurysm is an abnormal growth in the wall of a weakened blood vessel, and can often be fatal upon rupture. Studies have shown that aneurysm shape and hemodynamics, in conjunction with other parameters, play an important role in growth and rupture. The objective of this study was to investigate the impact of varying inflow conditions on flow structures in an aneurysm. An idealized rigid sidewall aneurysm model was prepared and the Womersley number (α) and Reynolds number (Re) values were varied from 2 to 5 and 50 to 250, respectively. A ViVitro Labs pump system was used for inflow control and Particle Image Velocimetry was used for conducting velocity measurements. The results showed that the primary vortex path varied with an increase in α, while an increase in Re was correlated to the vortex strength and formation of secondary vortical structures. The evolution and decay of vortical structures were also observed to be dependent on α and Re.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An aneurysm is an abnormal growth in the wall of a weakened blood vessel, and can often be fatal upon rupture. Studies have shown that aneurysm shape and hemodynamics, in conjunction with other parameters, play an important role in growth and rupture. The objective of this study was to investigate the impact of varying inflow conditions on flow structures in an aneurysm. An idealized rigid sidewall aneurysm model was prepared and the Womersley number (α) and Reynolds number (Re) values were varied from 2 to 5 and 50 to 250, respectively. A ViVitro Labs pump system was used for inflow control and Particle Image Velocimetry was used for conducting velocity measurements. The results showed that the primary vortex path varied with an increase in α, while an increase in Re was correlated to the vortex strength and formation of secondary vortical structures. The evolution and decay of vortical structures were also observed to be dependent on α and Re.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动脉瘤内大规模流动结构的实验研究
动脉瘤是脆弱血管壁上的异常生长,一旦破裂往往是致命的。研究表明,动脉瘤的形状和血流动力学,连同其他参数,在生长和破裂中起重要作用。本研究的目的是探讨不同流入条件对动脉瘤内流动结构的影响。制备理想刚性侧壁动脉瘤模型,Womersley数(α)和雷诺数(Re)分别在2 ~ 5和50 ~ 250之间变化。使用ViVitro Labs泵系统进行流入控制,并使用颗粒图像测速仪进行速度测量。结果表明,一次涡路径随α的增加而变化,Re的增加与涡强度和二次涡结构的形成有关。旋涡结构的演化和衰减也与α和Re有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Rayleigh–Benard convection in a micropolar ferromagnetic fluid
IF 6.6 1区 工程技术International Journal of Engineering SciencePub Date : 2002-02-01 DOI: 10.1016/S0020-7225(01)00046-5
Annamma Abraham
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Investigation of a Flapping Motion Downstream of a Backward Facing Step Experimental Study on Modeled Caudal Fins Propelling by Elastic Deformation Simulation of Coalescence and Breakup of Dispersed Water Droplets in Continuous Oil Phase Multi-Objective Optimization on Inlet Pipe of a Vertical Inline Pump Based on Genetic Algorithm and Artificial Neural Network Turbulent Flow Characteristics Over Offset Wall Confined Columns in a Channel at Low Reynolds Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1