Hendrik Wöhrle, M. D. L. Alvarez, Fabian Schlenke, A. Walsemann, M. Karagounis, F. Kirchner
{"title":"Surrogate Model based Co-Optimization of Deep Neural Network Hardware Accelerators","authors":"Hendrik Wöhrle, M. D. L. Alvarez, Fabian Schlenke, A. Walsemann, M. Karagounis, F. Kirchner","doi":"10.1109/MWSCAS47672.2021.9531708","DOIUrl":null,"url":null,"abstract":"In this paper, we present an ASIC based on 22FDX/FDSOI technology for the detection of atrial fibrillation in human electrocardiograms using neural networks. The ASIC consists of a RISC-V core for supporting software components and an application-specific machine learning IP core (ML-IP), which is used to implement the computationally intensive inference. The ASIC was designed for maximum energy efficiency. A special feature of the ML-IP is its modular, generic and scalable design of the ML-IP which allows to specify the quantization of each computational operation, the degree of parallelization and the architecture of the neural network. This in turn allows the use of ML-based optimization techniques to perform co-optimization for hardware design and architecture of the neural network (NNs). Here, a multi-objective optimization of the overall system is performed with respect to computational efficiency at a given classification accuracy and speed by using a multi-objective optimization, which is carried out using a probabilistic surrogate model. This model tries to find the optimal neural network architecture with a minimum number of training, simulation and evaluation steps.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"28 1","pages":"40-45"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we present an ASIC based on 22FDX/FDSOI technology for the detection of atrial fibrillation in human electrocardiograms using neural networks. The ASIC consists of a RISC-V core for supporting software components and an application-specific machine learning IP core (ML-IP), which is used to implement the computationally intensive inference. The ASIC was designed for maximum energy efficiency. A special feature of the ML-IP is its modular, generic and scalable design of the ML-IP which allows to specify the quantization of each computational operation, the degree of parallelization and the architecture of the neural network. This in turn allows the use of ML-based optimization techniques to perform co-optimization for hardware design and architecture of the neural network (NNs). Here, a multi-objective optimization of the overall system is performed with respect to computational efficiency at a given classification accuracy and speed by using a multi-objective optimization, which is carried out using a probabilistic surrogate model. This model tries to find the optimal neural network architecture with a minimum number of training, simulation and evaluation steps.