{"title":"Search of Non-circular Slip Surface Based on Improved FOA","authors":"Shen Hong, Yuan Xiuling, Wang Pengyi","doi":"10.11648/j.ajce.20210906.14","DOIUrl":null,"url":null,"abstract":": The determination of the most critical non-circular slip surface can be attributed to the optimization of complex non-linear multi-peak function due to its numerous control variables and large amount of calculation. It is a trend in recent years to apply intelligent optimization algorithm into slope stability analysis. Considering that the standard Fruit fly Optimization Algorithm (FOA) is prone to fall into local extremum, the improved Fruit fly Optimization Algorithm is obtained by incorporating the standard FOA with the simulated annealing idea. In order to improve the search efficiency, a fixed step size is adjusted to an adaptive step size, and a double tier search strategy is proposed to be applied: the potential non-circular slip surface is obtained from the outer layer, and the factor of safety along the potential slip surface is calculated step by step from the inner layer. The improved FOA is applied to a slope with weak interlayer. The feasibility, superiority and efficiency of the improved algorithm are proved by comparing its answers to the judges'. Different inter-slice force functions, various initial values of Fs and λ are assumed, and the results show that these parameters could hardly affect final solution for safety factor.","PeriodicalId":7606,"journal":{"name":"American Journal of Civil Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ajce.20210906.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
: The determination of the most critical non-circular slip surface can be attributed to the optimization of complex non-linear multi-peak function due to its numerous control variables and large amount of calculation. It is a trend in recent years to apply intelligent optimization algorithm into slope stability analysis. Considering that the standard Fruit fly Optimization Algorithm (FOA) is prone to fall into local extremum, the improved Fruit fly Optimization Algorithm is obtained by incorporating the standard FOA with the simulated annealing idea. In order to improve the search efficiency, a fixed step size is adjusted to an adaptive step size, and a double tier search strategy is proposed to be applied: the potential non-circular slip surface is obtained from the outer layer, and the factor of safety along the potential slip surface is calculated step by step from the inner layer. The improved FOA is applied to a slope with weak interlayer. The feasibility, superiority and efficiency of the improved algorithm are proved by comparing its answers to the judges'. Different inter-slice force functions, various initial values of Fs and λ are assumed, and the results show that these parameters could hardly affect final solution for safety factor.