T. Onuki, W. Uesugi, H. Tamura, A. Isobe, Y. Ando, S. Okamoto, K. Kato, T. Yew, Chen Bin Lin, J. Y. Wu, C. Shuai, Shao Hui Wu, James Myers, K. Doppler, M. Fujita, S. Yamazaki
{"title":"Embedded memory and ARM Cortex-M0 core using 60-nm C-axis aligned crystalline indium-gallium-zinc oxide FET integrated with 65-nm Si CMOS","authors":"T. Onuki, W. Uesugi, H. Tamura, A. Isobe, Y. Ando, S. Okamoto, K. Kato, T. Yew, Chen Bin Lin, J. Y. Wu, C. Shuai, Shao Hui Wu, James Myers, K. Doppler, M. Fujita, S. Yamazaki","doi":"10.1109/VLSIC.2016.7573504","DOIUrl":null,"url":null,"abstract":"Low-power embedded memory and an ARM Cortex-M0 core that operate at 30 MHz were fabricated in combination with a 60-nm c-axis aligned crystalline indium-gallium-zinc oxide FET and a 65-nm Si CMOS. The embedded memory adopted a structure in which oxide semiconductor-based 1T1C cells are stacked on Si sense amplifiers. This memory achieved a standby power of 3 nW while retaining data and an active power of 11.7 μW/MHz by making each bitline as short as each sense amplifier. The M0 core adopted the flip-flop in which an oxide semiconductor-based 3T1C cell is stacked on the Si scan flip-flop cell without area overhead and achieved a standby power of 6 nW while retaining data. The combination of the embedded memory and the M0 core provided high-performance, low-power Internet of Things devices operating with a broad range of active standby power ratios.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"44 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Low-power embedded memory and an ARM Cortex-M0 core that operate at 30 MHz were fabricated in combination with a 60-nm c-axis aligned crystalline indium-gallium-zinc oxide FET and a 65-nm Si CMOS. The embedded memory adopted a structure in which oxide semiconductor-based 1T1C cells are stacked on Si sense amplifiers. This memory achieved a standby power of 3 nW while retaining data and an active power of 11.7 μW/MHz by making each bitline as short as each sense amplifier. The M0 core adopted the flip-flop in which an oxide semiconductor-based 3T1C cell is stacked on the Si scan flip-flop cell without area overhead and achieved a standby power of 6 nW while retaining data. The combination of the embedded memory and the M0 core provided high-performance, low-power Internet of Things devices operating with a broad range of active standby power ratios.