A Survey of State Merging Strategies for DFA Identification in the Limit

Cristina Tîrnăucă
{"title":"A Survey of State Merging Strategies for DFA Identification in the Limit","authors":"Cristina Tîrnăucă","doi":"10.17345/triangle8.121-136","DOIUrl":null,"url":null,"abstract":"Identication of deterministic nite automata (DFAs) has an extensive history, both in passive learning and in active learning. Intractability results by Gold [5] and Angluin [1] show that nding the smallest automaton consistent with a set of accepted and rejected strings is NP-complete. Nevertheless, a lot of work has been done on learning DFAs from examples within specic heuristics, starting with Trakhtenbrot and Barzdin's algorithm [15], rediscovered and applied to the discipline of grammatical inference by Gold [5]. Many other algorithms have been developed, the convergence of most of which is based on characteristic sets: RPNI (Regular Positive and Negative Inference) by J. Oncina and P. García [11, 12], Traxbar by K. Lang [8], EDSM (Evidence Driven State Merging), Windowed EDSM and Blue- Fringe EDSM by K. Lang, B. Pearlmutter and R. Price [9], SAGE (Self-Adaptive Greedy Estimate) by H. Juillé [7], etc. This paper provides a comprehensive study of the most important state merging strategies developed so far.","PeriodicalId":76763,"journal":{"name":"Triangle; the Sandoz journal of medical science","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Triangle; the Sandoz journal of medical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17345/triangle8.121-136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Identication of deterministic nite automata (DFAs) has an extensive history, both in passive learning and in active learning. Intractability results by Gold [5] and Angluin [1] show that nding the smallest automaton consistent with a set of accepted and rejected strings is NP-complete. Nevertheless, a lot of work has been done on learning DFAs from examples within specic heuristics, starting with Trakhtenbrot and Barzdin's algorithm [15], rediscovered and applied to the discipline of grammatical inference by Gold [5]. Many other algorithms have been developed, the convergence of most of which is based on characteristic sets: RPNI (Regular Positive and Negative Inference) by J. Oncina and P. García [11, 12], Traxbar by K. Lang [8], EDSM (Evidence Driven State Merging), Windowed EDSM and Blue- Fringe EDSM by K. Lang, B. Pearlmutter and R. Price [9], SAGE (Self-Adaptive Greedy Estimate) by H. Juillé [7], etc. This paper provides a comprehensive study of the most important state merging strategies developed so far.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极限条件下DFA识别的状态合并策略研究
无论是在被动学习还是在主动学习中,确定性自动机(dfa)的识别都有着广泛的历史。Gold[5]和Angluin[1]的顽固性结果表明,找到与一组接受和拒绝的字符串一致的最小自动机是np完全的。尽管如此,从特定启发式中的示例学习dfa方面已经做了大量工作,从Trakhtenbrot和Barzdin的算法[15]开始,Gold[5]重新发现并将其应用于语法推理学科。已经开发了许多其他算法,其中大多数算法的收敛是基于特征集的:J. Oncina和P. García的RPNI(正则正负推理)[11,12],K. Lang的Traxbar [8], EDSM(证据驱动状态合并),K. Lang, B. Pearlmutter和R. Price的Windowed EDSM和Blue- Fringe EDSM [9], H. juill的SAGE(自适应贪婪估计)[7]等。本文对迄今为止最重要的国家合并策略进行了全面的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Justo Alejo a Contrapelo de la Realidad Una Aproximación Interdisciplinar al Origen del Lenguaje Humano Análisis Cuantitativo y Cualitativo de "Viaje" y "Camino Interior" de Widad Ben Musa La Adquisición de las Oclusivas y Africadas del Chino por Aprendices Nativos del Español El Tratamiento de los Nombres Propios en la Traducción de "Viaje al Oeste": Un Estudio Cuantitativo-Cualitativo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1