A New Design Methodology for Carrying Capacity of Hot Rolled I Section Steel of Local Buckling: The Overall Interaction Concept

Jiajing Liu, Weining Yuan, Hu Xiong, Y. Xu
{"title":"A New Design Methodology for Carrying Capacity of Hot Rolled I Section Steel of Local Buckling: The Overall Interaction Concept","authors":"Jiajing Liu, Weining Yuan, Hu Xiong, Y. Xu","doi":"10.11648/J.AJCE.20190702.13","DOIUrl":null,"url":null,"abstract":"Through the finite element software ABAQUS, the finite element model considering the initial imperfection and residual stress is established, and the finite element results are compared with the collected test results to verify the reliability of the numerical model. By analyzing the ultimate carrying capacity of I section of axial compression with different aspect ratios, the design method of ultimate carrying capacity of axial compression members of hot rolled I section from thick to thin is studied. The result of Overall Interaction Concept (OIC) for hot rolled I section steel under axial compression is obtained by using the finite element calculation results, and the results are compared with the Eurocode (EN1993-1-1) and the Chinese steel structure design standard (GB50017-2017), so as to study the accuracy of the recommend design method. Results found that: i) the calculation result from EC3 of the cross section classification concept most conservative or unsafe, ii) the results from GB almost all conservative, iii) comparing with the existed design methods the OIC design method reflect the relationship between carrying capacity and the the generalized relative slenderness, that can accurately predict ultimate carrying capacity. Research shows that OIC is a more effective and accurate method.","PeriodicalId":7606,"journal":{"name":"American Journal of Civil Engineering","volume":"199 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJCE.20190702.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Through the finite element software ABAQUS, the finite element model considering the initial imperfection and residual stress is established, and the finite element results are compared with the collected test results to verify the reliability of the numerical model. By analyzing the ultimate carrying capacity of I section of axial compression with different aspect ratios, the design method of ultimate carrying capacity of axial compression members of hot rolled I section from thick to thin is studied. The result of Overall Interaction Concept (OIC) for hot rolled I section steel under axial compression is obtained by using the finite element calculation results, and the results are compared with the Eurocode (EN1993-1-1) and the Chinese steel structure design standard (GB50017-2017), so as to study the accuracy of the recommend design method. Results found that: i) the calculation result from EC3 of the cross section classification concept most conservative or unsafe, ii) the results from GB almost all conservative, iii) comparing with the existed design methods the OIC design method reflect the relationship between carrying capacity and the the generalized relative slenderness, that can accurately predict ultimate carrying capacity. Research shows that OIC is a more effective and accurate method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部屈曲热轧I型钢承载力设计新方法:整体相互作用概念
通过有限元软件ABAQUS建立了考虑初始缺陷和残余应力的有限元模型,并将有限元结果与采集的试验结果进行了对比,验证了数值模型的可靠性。通过分析不同长径比的轴压工字钢截面极限承载力,研究了热轧工字钢由厚到薄的轴压构件极限承载力设计方法。利用有限元计算结果,得到热轧I型钢在轴压作用下的整体相互作用概念(OIC)结果,并将结果与欧洲规范(EN1993-1-1)和中国钢结构设计标准(GB50017-2017)进行比较,研究推荐设计方法的准确性。结果发现:截面分类概念的EC3计算结果最保守或不安全;GB计算结果几乎全部保守;OIC设计方法与现有设计方法相比,反映了承载力与广义相对长细度的关系,能准确预测极限承载力。研究表明,OIC是一种更为有效和准确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conformance and Performance Evaluation of Land Use Plan of Yirba Town Performance of Simplified Damage-Based Concrete Models in Seismic Applications Pavement Service Life Prediction with PLAXIS 3D in Bangladesh Surface-Modified Nanoclays for Enhancing Resistance to Moisture Damage in Hot Mix Asphalt Structural Performance Evaluation of Diversion Weir Structure: Case Study of Basaka Small Scale Irrigation Scheme, Oromia, Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1