An Chen, S. Haddad, Yi-Ching Wu, T. Fang, Zhida Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. Vanbuskirk, M. Taguchi
{"title":"Non-volatile resistive switching for advanced memory applications","authors":"An Chen, S. Haddad, Yi-Ching Wu, T. Fang, Zhida Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. Vanbuskirk, M. Taguchi","doi":"10.1109/IEDM.2005.1609461","DOIUrl":null,"url":null,"abstract":"A non-volatile resistive switching mechanism based on trap-related space-charge-limited-conduction (SCLC) is proposed. Excellent memory characteristics have been demonstrated using near-stoichiometric cuprous oxide (CuxO) metal-insulator-metal (MIM) structures: low-power operation, fast switching speed, superior temperature characteristics, and long retention. This MIM memory cell is fully compatible with standard CMOS process. The proposed switching mechanism is a strong contender for high density and low cost memory applications","PeriodicalId":13071,"journal":{"name":"IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest.","volume":"37 1","pages":"746-749"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"181","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2005.1609461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 181
Abstract
A non-volatile resistive switching mechanism based on trap-related space-charge-limited-conduction (SCLC) is proposed. Excellent memory characteristics have been demonstrated using near-stoichiometric cuprous oxide (CuxO) metal-insulator-metal (MIM) structures: low-power operation, fast switching speed, superior temperature characteristics, and long retention. This MIM memory cell is fully compatible with standard CMOS process. The proposed switching mechanism is a strong contender for high density and low cost memory applications