David Crisp, Han Dolman, Toste Tanhua, Galen A. McKinley, Judith Hauck, Ana Bastos, Stephen Sitch, Simon Eggleston, Valentin Aich
{"title":"How Well Do We Understand the Land-Ocean-Atmosphere Carbon Cycle?","authors":"David Crisp, Han Dolman, Toste Tanhua, Galen A. McKinley, Judith Hauck, Ana Bastos, Stephen Sitch, Simon Eggleston, Valentin Aich","doi":"10.1029/2021RG000736","DOIUrl":null,"url":null,"abstract":"<p>Fossil fuel combustion, land use change and other human activities have increased the atmospheric carbon dioxide (CO<sub>2</sub>) abundance by about 50% since the beginning of the industrial age. The atmospheric CO<sub>2</sub> growth rates would have been much larger if natural sinks in the land biosphere and ocean had not removed over half of this anthropogenic CO<sub>2</sub>. As these CO<sub>2</sub> emissions grew, uptake by the ocean increased in response to increases in atmospheric CO<sub>2</sub> partial pressure (pCO<sub>2</sub>). On land, gross primary production also increased, but the dynamics of other key aspects of the land carbon cycle varied regionally. Over the past three decades, CO<sub>2</sub> uptake by intact tropical humid forests declined, but these changes are offset by increased uptake across mid- and high-latitudes. While there have been substantial improvements in our ability to study the carbon cycle, measurement and modeling gaps still limit our understanding of the processes driving its evolution. Continued ship-based observations combined with expanded deployments of autonomous platforms are needed to quantify ocean-atmosphere fluxes and interior ocean carbon storage on policy-relevant spatial and temporal scales. There is also an urgent need for more comprehensive measurements of stocks, fluxes and atmospheric CO<sub>2</sub> in humid tropical forests and across the Arctic and boreal regions, which are experiencing rapid change. Here, we review our understanding of the atmosphere, ocean, and land carbon cycles and their interactions, identify emerging measurement and modeling capabilities and gaps and the need for a sustainable, operational framework to ensure a scientific basis for carbon management.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"60 2","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000736","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2021RG000736","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 30
Abstract
Fossil fuel combustion, land use change and other human activities have increased the atmospheric carbon dioxide (CO2) abundance by about 50% since the beginning of the industrial age. The atmospheric CO2 growth rates would have been much larger if natural sinks in the land biosphere and ocean had not removed over half of this anthropogenic CO2. As these CO2 emissions grew, uptake by the ocean increased in response to increases in atmospheric CO2 partial pressure (pCO2). On land, gross primary production also increased, but the dynamics of other key aspects of the land carbon cycle varied regionally. Over the past three decades, CO2 uptake by intact tropical humid forests declined, but these changes are offset by increased uptake across mid- and high-latitudes. While there have been substantial improvements in our ability to study the carbon cycle, measurement and modeling gaps still limit our understanding of the processes driving its evolution. Continued ship-based observations combined with expanded deployments of autonomous platforms are needed to quantify ocean-atmosphere fluxes and interior ocean carbon storage on policy-relevant spatial and temporal scales. There is also an urgent need for more comprehensive measurements of stocks, fluxes and atmospheric CO2 in humid tropical forests and across the Arctic and boreal regions, which are experiencing rapid change. Here, we review our understanding of the atmosphere, ocean, and land carbon cycles and their interactions, identify emerging measurement and modeling capabilities and gaps and the need for a sustainable, operational framework to ensure a scientific basis for carbon management.
期刊介绍:
Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.