A computationally efficient target search algorithm for a Monte Carlo ion implantation simulator

G. Wang, B. Obradovic, Y. Chen, D. Li, S. Oak, G. Srivastav, S. Banerjee, A. Tasch
{"title":"A computationally efficient target search algorithm for a Monte Carlo ion implantation simulator","authors":"G. Wang, B. Obradovic, Y. Chen, D. Li, S. Oak, G. Srivastav, S. Banerjee, A. Tasch","doi":"10.1109/TCAD.1996.6449179","DOIUrl":null,"url":null,"abstract":"Ion implantation is a critical technology in semiconductor Ultra Large Scale Integration (ULSI). Binary collision approximation (BCA)-based Monte Carlo (MC) ion implantation simulators are commonly used to predict the impurity and damage profiles. A deterministic propagator is needed in these simulators to simulate the propagation of ions in crystalline materials. A search-for-target algorithm is frequently called to determine the collision partners and collision parameters in a deterministic propagator, and this is usually the computational bottleneck of MC ion implantation simulators. The standard search-for-target algorithm has been redesigned for computational efficiency and for economic usage of memory. Instead of searching for collision partners in a standard 29-atom crystal neighborhood identical to all ions, narrowed-down potential target lists are pre-computed based on the ion's relative position to a reference point as well as its direction of motion. The American National Standards Institution (ANSI) C++ standard container class bitset [1] is used to store such potential target lists, and the memory usage is very efficient. Combined with a quasi-simultaneous collision algorithm, the CPU times for MeV P and B implantation simulations are found to be reduced by more than a factor of two, rendering very reasonable computation times for MeV ion implantation simulations on standard workstations.","PeriodicalId":100835,"journal":{"name":"Journal of Technology Computer Aided Design TCAD","volume":"73 1","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology Computer Aided Design TCAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCAD.1996.6449179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ion implantation is a critical technology in semiconductor Ultra Large Scale Integration (ULSI). Binary collision approximation (BCA)-based Monte Carlo (MC) ion implantation simulators are commonly used to predict the impurity and damage profiles. A deterministic propagator is needed in these simulators to simulate the propagation of ions in crystalline materials. A search-for-target algorithm is frequently called to determine the collision partners and collision parameters in a deterministic propagator, and this is usually the computational bottleneck of MC ion implantation simulators. The standard search-for-target algorithm has been redesigned for computational efficiency and for economic usage of memory. Instead of searching for collision partners in a standard 29-atom crystal neighborhood identical to all ions, narrowed-down potential target lists are pre-computed based on the ion's relative position to a reference point as well as its direction of motion. The American National Standards Institution (ANSI) C++ standard container class bitset [1] is used to store such potential target lists, and the memory usage is very efficient. Combined with a quasi-simultaneous collision algorithm, the CPU times for MeV P and B implantation simulations are found to be reduced by more than a factor of two, rendering very reasonable computation times for MeV ion implantation simulations on standard workstations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种计算效率高的蒙特卡罗离子注入模拟器目标搜索算法
离子注入是半导体超大规模集成电路中的一项关键技术。基于二元碰撞近似(BCA)的蒙特卡罗(MC)离子注入模拟器通常用于预测杂质和损伤分布。为了模拟离子在晶体材料中的传播,这些模拟器需要一个确定性的传播器。在确定性传播器中,经常需要使用目标搜索算法来确定碰撞伙伴和碰撞参数,这通常是MC离子注入模拟器的计算瓶颈。为了提高计算效率和节省内存,对标准的目标搜索算法进行了重新设计。不是在一个标准的29个原子晶体中寻找与所有离子相同的碰撞伙伴,而是根据离子与参考点的相对位置及其运动方向预先计算出缩小的潜在目标列表。使用美国国家标准协会(ANSI) c++标准容器类bitset[1]来存储这些潜在的目标列表,内存使用非常高效。结合准同步碰撞算法,发现MeV P和B注入模拟的CPU时间减少了两倍以上,使得在标准工作站上进行MeV离子注入模拟的计算时间非常合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VLSI performance metric based on minimum TCAD simulations Convergence estimation for stationary ensemble Monte Carlo simulations The role of boron segregation and transient enhanced diffusion on reverse short channel effect A computationally efficient ion implantation damage model and its application to multiple implant simulations Full-band-structure theory of high-field transport and impact ionization of electrons and holes in Ge, Si, and GaAs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1