CMOS-compatible ehancement-mode GaN-on-Si MOS-HEMT with high breakdown voltage (930V) using thermal oxidation and TMAH wet etching

C. Tang, Mingchen Hou, Xueyang Li, G. Xie, Kuang Sheng
{"title":"CMOS-compatible ehancement-mode GaN-on-Si MOS-HEMT with high breakdown voltage (930V) using thermal oxidation and TMAH wet etching","authors":"C. Tang, Mingchen Hou, Xueyang Li, G. Xie, Kuang Sheng","doi":"10.1109/ECCE.2015.7309715","DOIUrl":null,"url":null,"abstract":"In this paper, we report for the first time, an enhancement-mode (E-mode) Al2O3/GaN metal-oxide-semiconductor high-electron-mobility-transistor (MOS-HEMT) using CMOS-compatible techniques including gate region local thermal oxidation and organic alkaline solution (TMAH) wet etching. The fabricated MOS-HEMT exhibits a high positive threshold voltage of +2.5 V, indicating complete pinch-off of the 2 dimensional electron gas (2DEG) channel. Maximum drain current of 250 mA/mm and an off-state breakdown voltage up to 930 V at a 0 V gate bias are observed for the fabricated device of LG = 2.0 μm and LGD = 14 μm, manifesting a low cost, highly repeatable CMOS compatible fabrication method of normally-off GaN-on-Si devices for power electronics applications.","PeriodicalId":6654,"journal":{"name":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"30 1","pages":"396-399"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2015.7309715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we report for the first time, an enhancement-mode (E-mode) Al2O3/GaN metal-oxide-semiconductor high-electron-mobility-transistor (MOS-HEMT) using CMOS-compatible techniques including gate region local thermal oxidation and organic alkaline solution (TMAH) wet etching. The fabricated MOS-HEMT exhibits a high positive threshold voltage of +2.5 V, indicating complete pinch-off of the 2 dimensional electron gas (2DEG) channel. Maximum drain current of 250 mA/mm and an off-state breakdown voltage up to 930 V at a 0 V gate bias are observed for the fabricated device of LG = 2.0 μm and LGD = 14 μm, manifesting a low cost, highly repeatable CMOS compatible fabrication method of normally-off GaN-on-Si devices for power electronics applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用热氧化和TMAH湿法蚀刻的cmos兼容增强型GaN-on-Si MOS-HEMT具有高击穿电压(930V)
在本文中,我们首次报道了一种增强模式(E-mode) Al2O3/GaN金属氧化物半导体高电子迁移率晶体管(MOS-HEMT),该晶体管采用与cmos兼容的技术,包括栅极区局部热氧化和有机碱性溶液(TMAH)湿法蚀刻。制备的MOS-HEMT具有+2.5 V的高正阈值电压,表明二维电子气(2DEG)通道完全掐断。对于LG = 2.0 μm和LGD = 14 μm的器件,观察到最大漏极电流为250 mA/mm,在0 V栅极偏置下的断态击穿电压高达930 V,表明了一种低成本、高可重复的CMOS兼容的GaN-on-Si器件的正常关断制造方法,用于电力电子应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy comparison between Gompertz and polynomial based PV models Grid synchronization for a virtual direct power-controlled DFIG wind power system Enhancement on capacitor-voltage-balancing capability of a modular multilevel cascade inverter for medium-voltage synchronous-motor drives State observer for sensorless control of a grid-connected converter equipped with an LCL filter: Direct discrete-time design Multi-tap transformer topologies for improved tolerance against misalignment in inductive power transfer systems for electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1