Comparative stability study of DC current control strategies for a droop-controlled PMSG system

Fei Gao, S. Bozhko, G. Asher, P. Wheeler
{"title":"Comparative stability study of DC current control strategies for a droop-controlled PMSG system","authors":"Fei Gao, S. Bozhko, G. Asher, P. Wheeler","doi":"10.1109/ECCE.2015.7310536","DOIUrl":null,"url":null,"abstract":"In presence of tightly regulated power electronic converters and motor drives in the more electric aircraft (MEA), stability is a great concern for the electrical power system (EPS) in the MEA. The DC electrical power distribution system (EPDS) of the MEA is one of the core architecture for electrical power transmission. DC transmission cables are also taken into account since it cannot be neglected in such low voltage microgrid. Proper active power is regulated by DC current control for the active rectifier. Both the output current of the active rectifier and the current after the capacitor can be used as feedback variable of the controller. This paper undertakes the comparative stability study on the DC current feedback approaches for droop-controlled PMSG system. The mathematical model and corresponding linearized model around the equilibrium point are developed. The state-space matrix is derived and the layout of the eigenvalues is shown for different methods respectively. The analysis is verified by time domain simulation results in Matlab/Simulink.","PeriodicalId":6654,"journal":{"name":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"114 1","pages":"6246-6253"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2015.7310536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In presence of tightly regulated power electronic converters and motor drives in the more electric aircraft (MEA), stability is a great concern for the electrical power system (EPS) in the MEA. The DC electrical power distribution system (EPDS) of the MEA is one of the core architecture for electrical power transmission. DC transmission cables are also taken into account since it cannot be neglected in such low voltage microgrid. Proper active power is regulated by DC current control for the active rectifier. Both the output current of the active rectifier and the current after the capacitor can be used as feedback variable of the controller. This paper undertakes the comparative stability study on the DC current feedback approaches for droop-controlled PMSG system. The mathematical model and corresponding linearized model around the equilibrium point are developed. The state-space matrix is derived and the layout of the eigenvalues is shown for different methods respectively. The analysis is verified by time domain simulation results in Matlab/Simulink.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下垂控制PMSG系统直流电流控制策略的比较稳定性研究
在电动飞机(MEA)中存在严格控制的电力电子变换器和电机驱动,稳定性是MEA中电力系统(EPS)的一个重要问题。MEA的直流配电系统(EPDS)是电力传输的核心架构之一。由于直流输电电缆在低压微电网中不可忽视,因此也要考虑直流输电电缆。通过对有源整流器的直流电流控制来调节适当的有源功率。有源整流器的输出电流和电容后的电流都可以作为控制器的反馈变量。本文对下垂控制永磁同步电机系统的直流电流反馈方法进行了稳定性比较研究。建立了系统的数学模型和相应的平衡点线性化模型。导出了状态空间矩阵,并分别给出了不同方法的特征值布局。通过Matlab/Simulink的时域仿真结果验证了分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy comparison between Gompertz and polynomial based PV models Grid synchronization for a virtual direct power-controlled DFIG wind power system Enhancement on capacitor-voltage-balancing capability of a modular multilevel cascade inverter for medium-voltage synchronous-motor drives State observer for sensorless control of a grid-connected converter equipped with an LCL filter: Direct discrete-time design Multi-tap transformer topologies for improved tolerance against misalignment in inductive power transfer systems for electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1