A machine-learning classifier implemented in a standard 6T SRAM array

Jintao Zhang, Zhuo Wang, N. Verma
{"title":"A machine-learning classifier implemented in a standard 6T SRAM array","authors":"Jintao Zhang, Zhuo Wang, N. Verma","doi":"10.1109/VLSIC.2016.7573556","DOIUrl":null,"url":null,"abstract":"This paper presents a machine-learning classifier where the computation is performed within a standard 6T SRAM array. This eliminates explicit memory operations, which otherwise pose energy/performance bottlenecks, especially for emerging algorithms (e.g., from machine learning) that result in high ratio of memory accesses. We present an algorithm and prototype IC (in 130nm CMOS), where a 128×128 SRAM array performs storage of classifier models and complete classifier computations. We demonstrate a real application, namely digit recognition from MNIST-database images. The accuracy is equal to a conventional (ideal) digital/SRAM system, yet with 113× lower energy. The approach achieves accuracy >95% with a full feature set (i.e., 28×28=784 image pixels), and 90% when reduced to 82 features (as demonstrated on the IC due to area limitations). The energy per 10-way digit classification is 633pJ at a speed of 50MHz.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"28 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

This paper presents a machine-learning classifier where the computation is performed within a standard 6T SRAM array. This eliminates explicit memory operations, which otherwise pose energy/performance bottlenecks, especially for emerging algorithms (e.g., from machine learning) that result in high ratio of memory accesses. We present an algorithm and prototype IC (in 130nm CMOS), where a 128×128 SRAM array performs storage of classifier models and complete classifier computations. We demonstrate a real application, namely digit recognition from MNIST-database images. The accuracy is equal to a conventional (ideal) digital/SRAM system, yet with 113× lower energy. The approach achieves accuracy >95% with a full feature set (i.e., 28×28=784 image pixels), and 90% when reduced to 82 features (as demonstrated on the IC due to area limitations). The energy per 10-way digit classification is 633pJ at a speed of 50MHz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在标准6T SRAM阵列中实现的机器学习分类器
本文提出了一种机器学习分类器,其中计算在标准的6T SRAM阵列中执行。这消除了显式内存操作,否则会造成能量/性能瓶颈,特别是对于导致高内存访问比例的新兴算法(例如机器学习)。我们提出了一种算法和原型IC(在130nm CMOS中),其中128×128 SRAM阵列执行分类器模型的存储和完整的分类器计算。我们演示了一个实际应用,即从mnist数据库图像中识别数字。精度等于传统的(理想的)数字/SRAM系统,但能量降低113x。该方法在完整特征集(即28×28=784图像像素)下实现了>95%的准确率,而在减少到82个特征(如IC上所示,由于面积限制)时实现了90%的准确率。在50MHz的速度下,每10路数字分类的能量为633pJ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A chopping switched-capacitor RF receiver with integrated blocker detection, +31dBm OB-IIP3, and +15dBm OB-B1dB A wireless power transfer system with enhanced response and efficiency by fully-integrated fast-tracking wireless constant-idle-time control for implants Adaptive clocking with dynamic power gating for mitigating energy efficiency & performance impacts of fast voltage droop in a 22nm graphics execution core A high-density CMOS multi-modality joint sensor/stimulator array with 1024 pixels for holistic real-time cellular characterization A microelectrode array with 8,640 electrodes enabling simultaneous full-frame readout at 6.5 kfps and 112-channel switch-matrix readout at 20 kS/s
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1