Characterization of (AgCu)(InGa)Se2 absorber layer fabricated by a selenization process from metal precursor

Y. Tauchi, Kihwan Kim, Hyeonwook Park, W. Shafarman
{"title":"Characterization of (AgCu)(InGa)Se2 absorber layer fabricated by a selenization process from metal precursor","authors":"Y. Tauchi, Kihwan Kim, Hyeonwook Park, W. Shafarman","doi":"10.1109/pvsc-vol2.2012.6656787","DOIUrl":null,"url":null,"abstract":"In this paper, the effects of Ag-alloying in the selenization of metal precursors to form (AgCu) (InGa)Se2 are investigated. Metal precursors with different structures were prepared by sputtering from Cu0.77Ga0.23, Ag, and In targets. The phases and the composition of the precursor films were evaluated by X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive X-ray spectrometry. The addition of a Ag layer between the Mo and Cu-Ga-In layers resulted in much less islanding of In-rich phases than typically observed in sputtered Cu-Ga-In films. Selenization at 475 °C of Ag-containing precursors resulted in better adhesion than precursors without Ag. After the selenization reaction, Ag and Cu were uniformly distributed through the film, although Ga remained near the back of the film, as was observed in precursors without Ag. A (AgCu)(InGa)Se2 -based solar cell with 13.9% efficiency was demonstrated.","PeriodicalId":6420,"journal":{"name":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","volume":"2 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pvsc-vol2.2012.6656787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, the effects of Ag-alloying in the selenization of metal precursors to form (AgCu) (InGa)Se2 are investigated. Metal precursors with different structures were prepared by sputtering from Cu0.77Ga0.23, Ag, and In targets. The phases and the composition of the precursor films were evaluated by X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive X-ray spectrometry. The addition of a Ag layer between the Mo and Cu-Ga-In layers resulted in much less islanding of In-rich phases than typically observed in sputtered Cu-Ga-In films. Selenization at 475 °C of Ag-containing precursors resulted in better adhesion than precursors without Ag. After the selenization reaction, Ag and Cu were uniformly distributed through the film, although Ga remained near the back of the film, as was observed in precursors without Ag. A (AgCu)(InGa)Se2 -based solar cell with 13.9% efficiency was demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属前驱体硒化法制备(AgCu)(InGa)Se2吸收层的表征
本文研究了银合金化对金属前驱体硒化生成(AgCu) (InGa)Se2的影响。以Cu0.77Ga0.23、Ag和In为靶材,采用溅射法制备了不同结构的金属前驱体。采用x射线衍射、扫描电子显微镜(SEM)和能量色散x射线光谱法对前驱体膜的物相和组成进行了表征。在Mo和Cu-Ga-In层之间添加Ag层导致富in相的孤岛比通常在溅射Cu-Ga-In薄膜中观察到的要少得多。在475℃下,含银前驱体的硒化效果优于不含银的前驱体。硒化反应后,Ag和Cu均匀分布在膜中,而Ga仍在膜的背面附近,这与未添加Ag的前驱体的情况相同。证明了效率为13.9%的A (AgCu)(InGa)Se2基太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Initial operating experience of the 1.2-MW La Ola photovoltaic system The impact of selenisation on damp heat degradation of the CIGS back contact molybdenum Remote plasma chemical vapor deposition for high-efficiency ultra-thin ∼25-microns crystalline Si solar cells Study of point defects in ns pulsed-laser annealed CuInSe2 thin films Optical monitoring and control of three-stage coevaporated Cu(In1−xGax)Se2 by real-time spectroscopic ellipsometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1