Modeling of Temperature-Dependent MOSFET Aging

F. A. Herrera, M. Miura-Mattausch, H. Kikuchihara, T. Iizuka, H. Mattausch, H. Takatsuka
{"title":"Modeling of Temperature-Dependent MOSFET Aging","authors":"F. A. Herrera, M. Miura-Mattausch, H. Kikuchihara, T. Iizuka, H. Mattausch, H. Takatsuka","doi":"10.1109/SISPAD.2019.8870469","DOIUrl":null,"url":null,"abstract":"We have modeled MOSFET-device aging based on the trap-density increase, which is included in the Poisson equation to consider aging explicitly and physically correct. To preserve consistency, the Poisson equation is solved iteratively. Measured temperature dependence of aged I-V characteristics are well reproduced with implementation of this aging model into the industry-standard model HiSIM. The extracted physical device quantities with the developed model from measurements have been investigated to characterize the aging features. It is observed that the activation energy Ea as a function of Vgs is nearly identical for non-aged and aged devices. This concludes that the temperature dependence of aging originates mostly from the temperature-dependent electrostatic potential, resulting in negligible temperature dependency of extracted trap density Ntrap. To generalize the conclusion, 2D-device simulation is investigated for a double-gate (DG) MOSFET with increased stress-induced trap density. The same results as obtained from measurements are achieved, namely the activation energy is nearly identical for either non-aged or aged cases. This concludes that the temperature dependence of device aging can be accurately predicted using the temperature-dependent I-V characteristics of non-aged device.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"27 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We have modeled MOSFET-device aging based on the trap-density increase, which is included in the Poisson equation to consider aging explicitly and physically correct. To preserve consistency, the Poisson equation is solved iteratively. Measured temperature dependence of aged I-V characteristics are well reproduced with implementation of this aging model into the industry-standard model HiSIM. The extracted physical device quantities with the developed model from measurements have been investigated to characterize the aging features. It is observed that the activation energy Ea as a function of Vgs is nearly identical for non-aged and aged devices. This concludes that the temperature dependence of aging originates mostly from the temperature-dependent electrostatic potential, resulting in negligible temperature dependency of extracted trap density Ntrap. To generalize the conclusion, 2D-device simulation is investigated for a double-gate (DG) MOSFET with increased stress-induced trap density. The same results as obtained from measurements are achieved, namely the activation energy is nearly identical for either non-aged or aged cases. This concludes that the temperature dependence of device aging can be accurately predicted using the temperature-dependent I-V characteristics of non-aged device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度相关MOSFET老化的建模
我们建立了基于陷阱密度增加的mosfet器件老化模型,它包含在泊松方程中,以明确地和物理上正确地考虑老化。为了保持一致性,对泊松方程进行迭代求解。通过将该老化模型应用于工业标准模型HiSIM,可以很好地再现老化I-V特性的温度依赖性。利用所建立的模型从测量中提取的物理器件量进行了研究,以表征老化特征。我们观察到,对于未老化和老化的器件,活化能Ea作为Vgs的函数几乎相同。这表明,老化的温度依赖性主要来自于温度依赖性静电势,导致提取陷阱密度Ntrap的温度依赖性可以忽略不计。为了推广这一结论,研究了增加应力诱导陷阱密度的双栅极MOSFET的二维器件模拟。从测量得到的结果是相同的,即活化能几乎是相同的,无论是未老化或老化的情况下。这表明,利用非老化器件的温度依赖I-V特性可以准确地预测器件老化的温度依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Stacking Faults on the Thermoelectric Figure of Merit of Si Nanowires Effect of Trap on Carrier Transport in InAs FET with Al2 O3 Oxide: DFT-based NEGF simulations Defect creation and Diffusion under electric fields from first-principles: the prototypical case of silicon dioxide Quantum Transport Simulations of the Zero Temperature Coefficient in Gate-all-around Nanowire pFETs Electronic and structural properties of interstitial titanium in crystalline silicon from first-principles simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1