Pixel-level temperature sensor design for image sensors

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Infrared, Millimeter, and Terahertz Waves Pub Date : 2023-04-12 DOI:10.1117/12.2664572
Chiyuan Zhang, Nan Chen, L. Yao, Shengyou Zhong, Jiqing Zhang, Changkun Cui
{"title":"Pixel-level temperature sensor design for image sensors","authors":"Chiyuan Zhang, Nan Chen, L. Yao, Shengyou Zhong, Jiqing Zhang, Changkun Cui","doi":"10.1117/12.2664572","DOIUrl":null,"url":null,"abstract":"With the development of science and technology, image sensors are more and more widely used, such as digital cameras and surveillance cameras. However, due to the physical characteristics of the photodetector, which performance is sensitive to the variation of the operating temperature. Therefore, a digital temperature sensor integrated on the chip is required to measure the operating temperature and assist in correction and compensation. Traditional scheme integrates one temperature sensor on the whole image sensor chip, which can’t reflect the temperature distribution for each pixel. It’s desirable to implement temperature measurement in pixel level for accurate correction, but existing temperature sensor occupying area of hundred μm2, which can’t be input to the pixel of image sensor. In additional, the power consumption of each temperature sensor is μW-level, which will dissipate considerable power for million temperature sensors. In this paper, a pixel-level integrated temperature sensor is proposed. The circuit is composed of only a capacitor and a conventional diode. The readout circuit is similar to that of the active pixel of image sensor, thus the ADC (Analog-to-Digital Converter) and other readout circuits and be multiplexed. The temperature sensor integrated in pixel is designed, which area is only 0.21 μm2. The simulation results show the increased power consumption for 50Hz working pixels don’t exceed 4%. It’s confirmed that the proposed pixel-level integrated temperature sensor can measure the temperature of each pixel and assisting in the accurate correction of image sensor in pixel level.","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"26 1","pages":"125653X - 125653X-9"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/12.2664572","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of science and technology, image sensors are more and more widely used, such as digital cameras and surveillance cameras. However, due to the physical characteristics of the photodetector, which performance is sensitive to the variation of the operating temperature. Therefore, a digital temperature sensor integrated on the chip is required to measure the operating temperature and assist in correction and compensation. Traditional scheme integrates one temperature sensor on the whole image sensor chip, which can’t reflect the temperature distribution for each pixel. It’s desirable to implement temperature measurement in pixel level for accurate correction, but existing temperature sensor occupying area of hundred μm2, which can’t be input to the pixel of image sensor. In additional, the power consumption of each temperature sensor is μW-level, which will dissipate considerable power for million temperature sensors. In this paper, a pixel-level integrated temperature sensor is proposed. The circuit is composed of only a capacitor and a conventional diode. The readout circuit is similar to that of the active pixel of image sensor, thus the ADC (Analog-to-Digital Converter) and other readout circuits and be multiplexed. The temperature sensor integrated in pixel is designed, which area is only 0.21 μm2. The simulation results show the increased power consumption for 50Hz working pixels don’t exceed 4%. It’s confirmed that the proposed pixel-level integrated temperature sensor can measure the temperature of each pixel and assisting in the accurate correction of image sensor in pixel level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
像素级温度传感器的图像传感器设计
随着科学技术的发展,图像传感器的应用越来越广泛,如数码摄像机、监控摄像机等。然而,由于光电探测器的物理特性,其性能对工作温度的变化很敏感。因此,需要集成在芯片上的数字温度传感器来测量工作温度并辅助校正和补偿。传统的方案在整个图像传感器芯片上集成了一个温度传感器,无法反映每个像素的温度分布。为了精确校正,需要实现像素级的温度测量,但现有的温度传感器占地数百μm2,无法输入到图像传感器的像素上。此外,每个温度传感器的功耗为μ w级,这将为数百万个温度传感器消耗相当大的功率。本文提出了一种像素级集成温度传感器。该电路仅由一个电容器和一个传统二极管组成。读出电路类似于图像传感器的有源像素,因此ADC (Analog-to-Digital Converter,模数转换器)和其他读出电路可以复用。设计了面积仅为0.21 μm2的像素级温度传感器。仿真结果表明,50Hz工作像素的功耗增加不超过4%。验证了所提出的像素级集成温度传感器可以测量每个像素的温度,并有助于图像传感器在像素级的精确校正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Infrared, Millimeter, and Terahertz Waves
Journal of Infrared, Millimeter, and Terahertz Waves 工程技术-工程:电子与电气
CiteScore
6.20
自引率
6.90%
发文量
51
审稿时长
3 months
期刊介绍: The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications. Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms). Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.
期刊最新文献
Characterization of Ultrathin Conductive Films Using a Simplified Approach for Terahertz Time-Domain Spectroscopic Ellipsometry A 60-GHz Out-of-Phase Power Divider with WR-15 Standard Interface Based on Trapped Printed Gap Waveguide Technology Advanced Data Processing of THz-Time Domain Spectroscopy Data with Sinusoidally Moving Delay Lines Hard Rock Absorption Measurements in the W-Band Performance Analysis of Novel Graphene Process Low-Noise Amplifier with Multi-stage Stagger-Tuned Approach over D-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1