Hardware implementation of Multi-Rate input SoftMax activation function

Michael R. Wasef, N. Rafla
{"title":"Hardware implementation of Multi-Rate input SoftMax activation function","authors":"Michael R. Wasef, N. Rafla","doi":"10.1109/MWSCAS47672.2021.9531761","DOIUrl":null,"url":null,"abstract":"The SoftMax activation function is a normalized exponential function that is usually used as an activation function of the last layer of a fully connected neural network. The number of neurons in this layer represents the number of classes. The SoftMax activation function is used to normalize the network outputs to a probability distribution over predicted output classes. In this paper, a multi-rate input SoftMax activation function has been designed and built on FPGA. The unit can read 4 or 2 consecutive inputs or one input, every predefined number of cycles. A ROM design has been utilized to determine the exponential part of the function, while the Coordinate Rotation Digital Computer (CORDIC) reciprocal algorithm has been used to calculate the reciprocal of the sum of the input exponential. Hardware multipliers have been used to calculate the SoftMax output. Unit optimization is achieved by pipelining on the input and output stages. The unit can be configured and controlled by an ARM microcontroller as a complete System-on-Chip (SoC) built on Field Programmable Gate Array (FPGA).","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"24 1","pages":"783-786"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The SoftMax activation function is a normalized exponential function that is usually used as an activation function of the last layer of a fully connected neural network. The number of neurons in this layer represents the number of classes. The SoftMax activation function is used to normalize the network outputs to a probability distribution over predicted output classes. In this paper, a multi-rate input SoftMax activation function has been designed and built on FPGA. The unit can read 4 or 2 consecutive inputs or one input, every predefined number of cycles. A ROM design has been utilized to determine the exponential part of the function, while the Coordinate Rotation Digital Computer (CORDIC) reciprocal algorithm has been used to calculate the reciprocal of the sum of the input exponential. Hardware multipliers have been used to calculate the SoftMax output. Unit optimization is achieved by pipelining on the input and output stages. The unit can be configured and controlled by an ARM microcontroller as a complete System-on-Chip (SoC) built on Field Programmable Gate Array (FPGA).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多速率输入SoftMax激活功能的硬件实现
SoftMax激活函数是一种归一化指数函数,通常用作全连接神经网络最后一层的激活函数。这一层的神经元数量代表了类的数量。SoftMax激活函数用于将网络输出归一化为预测输出类的概率分布。本文在FPGA上设计并实现了多速率输入SoftMax激活函数。该单元可以读取4或2个连续输入或一个输入,每个预定义的周期数。利用ROM设计确定函数的指数部分,利用坐标旋转数字计算机(CORDIC)倒数算法计算输入指数和的倒数。硬件乘法器已经被用来计算SoftMax输出。单元优化是通过输入和输出阶段的流水线实现的。该单元可以由ARM微控制器配置和控制,作为一个完整的基于现场可编程门阵列(FPGA)的片上系统(SoC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Frequency Domain Simulation Method to Speed-up Analysis of Injection Locked Oscillators SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior Polynomial Filters with Controllable Overshoot In Their Step Transient Responses A low kickback noise and low power dynamic comparator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1