Prediksi Harga Beras Super dan Medium Menggunakan LSTM dan BILSTM (Moving Average Smoothing)

Niki Awalloedin
{"title":"Prediksi Harga Beras Super dan Medium Menggunakan LSTM dan BILSTM (Moving Average Smoothing)","authors":"Niki Awalloedin","doi":"10.24843/jik.2023.v16.i01.p04","DOIUrl":null,"url":null,"abstract":"Salah satu komoditas pangan yang penting karena banyak dikonsumsi di Indonesia adalah beras, inflasi harga pangan akan mempengaruhi nilai beli masyarakat, untuk itu penulis mencoba menerapkan algoritma LSTM dan BILSTM dalam memprediksi harga beras khususnya beras dengan kategori Beras Kualitas Medium I dan Beras Kualitas Super I. Prediksi harga pangan akan sangat bermanfaat bagi konsumen maupun produsen, untuk pemerintah hal ini dapat menjadi penunjang keputusan dalam mengambil langkah yang tepat untuk menjamin harga beras tetap terjangkau oleh masyarakat. Dalam penelitian ini menggunakan data history time series tahun 2017 – 2022 yang terdapat pada situs Pusat Informasi Harga Pangan Strategis Nasional (PIHPSN). Dua data series beras tersebut akan melalui proses smoothing Moving Average dan selanjutnya digunakan algoritma LSTM dan BILSTM untuk menghasilkan prediksi, dai hasil penelitian model terbaik adalah LSTM, untuk Beras Kualitas Super I MSE (6.651) nilai RMSE (0.986) dan pada Beras Kualitas Medium I MSE (4.862) nilai RMSE (0.989).","PeriodicalId":31227,"journal":{"name":"KLIK Kumpulan jurnaL Ilmu Komputer","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KLIK Kumpulan jurnaL Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/jik.2023.v16.i01.p04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Salah satu komoditas pangan yang penting karena banyak dikonsumsi di Indonesia adalah beras, inflasi harga pangan akan mempengaruhi nilai beli masyarakat, untuk itu penulis mencoba menerapkan algoritma LSTM dan BILSTM dalam memprediksi harga beras khususnya beras dengan kategori Beras Kualitas Medium I dan Beras Kualitas Super I. Prediksi harga pangan akan sangat bermanfaat bagi konsumen maupun produsen, untuk pemerintah hal ini dapat menjadi penunjang keputusan dalam mengambil langkah yang tepat untuk menjamin harga beras tetap terjangkau oleh masyarakat. Dalam penelitian ini menggunakan data history time series tahun 2017 – 2022 yang terdapat pada situs Pusat Informasi Harga Pangan Strategis Nasional (PIHPSN). Dua data series beras tersebut akan melalui proses smoothing Moving Average dan selanjutnya digunakan algoritma LSTM dan BILSTM untuk menghasilkan prediksi, dai hasil penelitian model terbaik adalah LSTM, untuk Beras Kualitas Super I MSE (6.651) nilai RMSE (0.986) dan pada Beras Kualitas Medium I MSE (4.862) nilai RMSE (0.989).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重要的粮食商品之一,因为很多在印尼是食用大米,食品价格通胀会影响购买力价值,为此作者试图预测中应用算法LSTM和BILSTM大米的价格,尤其是大米大米质量中等类别I和大米质量超级I .食品价格预测会对消费者和生产者来说,非常有用对政府来说,这可能是一个支持决策的因素,以采取适当的步骤,确保大米价格保持在公众可以负担得起的范围内。本研究采用了2017年至2022年战略粮食价格信息中心(PIHPSN)上的历史历史系列数据。这两款大米系列数据将通过“移动平均移动”算法进行预测,然后使用LSTM和BILSTM算法进行最好的研究结果为RMSE(0651)、RMSE优质大米(0986)和RMSE(0989)次质量媒介大米计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Prediksi Harga Beras Super dan Medium Menggunakan LSTM dan BILSTM (Moving Average Smoothing) Performance Test Application Center For Research And Community Service With The Pieces Method At STKIP Dharma Bakti Lubuk Alung Foundation Penerapan Metode Nine-Step Kimball Dalam Pengolahan Data History Menggunakan Data Warehouse dan Business Intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1