Hearing aid and Extreme Edge IoT Acceleration

R. Brennan, Stephanie Steffler, John S. Dods, James He
{"title":"Hearing aid and Extreme Edge IoT Acceleration","authors":"R. Brennan, Stephanie Steffler, John S. Dods, James He","doi":"10.1109/MWSCAS47672.2021.9531923","DOIUrl":null,"url":null,"abstract":"As commented on previously [1], IoT processing directly in edge devices is becoming increasingly necessary and advantageous, providing a number of distinct advantages over cloud based computation. Provided the edge device has sufficient resources, computation is not dependent on external (cloud) resources. Depending on the application or deployment, these external resources might be non-existent, scarce, unreliable, or overly power intensive for ongoing communication with the edge device for farming out part of the processing. Independent, isolated computation can also be beneficial to mitigate security concerns. Edge computing is local and scaled to the recognition effort required, yielding a much more efficient and responsive system. Local processing eliminates transmission power, facilitates accurate and quick environment sensing and assessment enabling advanced algorithms to take corrective action quickly. The remaining challenge is, of course, fitting the recognition system within the constraints of the given edge device. Further progress in this field has yielded preliminary results of a tiny accelerator for extreme edge devices. The procedure and experiment using a new standardized benchmark – EEMBC will be described in this paper and compared to the general computation approach.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"27 1","pages":"684-687"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As commented on previously [1], IoT processing directly in edge devices is becoming increasingly necessary and advantageous, providing a number of distinct advantages over cloud based computation. Provided the edge device has sufficient resources, computation is not dependent on external (cloud) resources. Depending on the application or deployment, these external resources might be non-existent, scarce, unreliable, or overly power intensive for ongoing communication with the edge device for farming out part of the processing. Independent, isolated computation can also be beneficial to mitigate security concerns. Edge computing is local and scaled to the recognition effort required, yielding a much more efficient and responsive system. Local processing eliminates transmission power, facilitates accurate and quick environment sensing and assessment enabling advanced algorithms to take corrective action quickly. The remaining challenge is, of course, fitting the recognition system within the constraints of the given edge device. Further progress in this field has yielded preliminary results of a tiny accelerator for extreme edge devices. The procedure and experiment using a new standardized benchmark – EEMBC will be described in this paper and compared to the general computation approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
助听器和极边缘物联网加速
如前所述[1],直接在边缘设备中进行物联网处理正变得越来越必要和有利,与基于云的计算相比,提供了许多明显的优势。如果边缘设备有足够的资源,计算不依赖于外部(云)资源。根据应用程序或部署的不同,这些外部资源可能不存在、稀缺、不可靠或过于耗电,无法与边缘设备进行持续通信,从而将部分处理外包出去。独立、隔离的计算也有助于减轻安全问题。边缘计算是本地的,并根据所需的识别工作进行扩展,从而产生更高效和响应更快的系统。本地处理消除了传输功率,促进了准确和快速的环境感知和评估,使先进的算法能够快速采取纠正措施。当然,剩下的挑战是在给定边缘设备的约束下拟合识别系统。该领域的进一步进展已经产生了用于极端边缘设备的微型加速器的初步结果。本文将描述使用新的标准化基准EEMBC的过程和实验,并与一般计算方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Frequency Domain Simulation Method to Speed-up Analysis of Injection Locked Oscillators SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior Polynomial Filters with Controllable Overshoot In Their Step Transient Responses A low kickback noise and low power dynamic comparator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1