D. Stradi, U. G. Vej-Hansen, P. Khomyakov, Maeng-Eun Lee, G. Penazzi, A. Blom, J. Wellendorff, S. Smidstrup, K. Stokbro
{"title":"Atomistic Modeling Of Nanoscale Ferroelectric Capacitors Using a Density Functional Theory And Non-Equilibrium Green’s-Function Method","authors":"D. Stradi, U. G. Vej-Hansen, P. Khomyakov, Maeng-Eun Lee, G. Penazzi, A. Blom, J. Wellendorff, S. Smidstrup, K. Stokbro","doi":"10.1109/SISPAD.2019.8870397","DOIUrl":null,"url":null,"abstract":"We propose a first-principles atomistic method based on density functional theory and the non-equilibrium Green’s-function method to investigate the electronic and structural response of metal-insulator-metal capacitors under applied bias voltages. We validate our method by showing its usefulness in two paradigmatic cases where including finite-bias structural relaxation effects is critical to describe the device behavior: formation of dielectric dead layers in a paraelectric SRO|STO|SRO capacitor due to an applied bias voltage, and the switching behavior of a ferroelectric SRO|BTO|SRO capacitor due to an external electric field.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"7 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a first-principles atomistic method based on density functional theory and the non-equilibrium Green’s-function method to investigate the electronic and structural response of metal-insulator-metal capacitors under applied bias voltages. We validate our method by showing its usefulness in two paradigmatic cases where including finite-bias structural relaxation effects is critical to describe the device behavior: formation of dielectric dead layers in a paraelectric SRO|STO|SRO capacitor due to an applied bias voltage, and the switching behavior of a ferroelectric SRO|BTO|SRO capacitor due to an external electric field.