Strojno prepoznavanje rukopisnog teksta za hrvatsku glagoljicu

IF 0.2 4区 社会学 0 HUMANITIES, MULTIDISCIPLINARY Slovo Pub Date : 2021-12-31 DOI:10.31745/s.72.5
Achim Rabus
{"title":"Strojno prepoznavanje rukopisnog teksta za hrvatsku glagoljicu","authors":"Achim Rabus","doi":"10.31745/s.72.5","DOIUrl":null,"url":null,"abstract":"The paper presents and discusses recent advances in Handwritten Text Recognition (HTR) technologies for handwritten and early printed texts in Croatian Glagolitic script. After elaborating on the general principles of training HTR models with respect to the Transkribus platform used for these experiments, the characteristics of the models trained are discussed. Specifically, the models use the Latin script to transcribe the Glagolitic source. In doing so, they transcribe ligatures and resolve abbreviations correctly in the majority of cases. The computed error rate of the models is below 6%, real-world performance seems to be similar. Using the models for pre-transcription can save a great amount of time when editing manuscripts and, thanks to fuzzy search (keyword spotting), even uncorrected HTR transcriptions can be used for various kinds of analysis. The models are publicly available via the Transkribus platform. Every scholar working on Glagolitic manuscripts and early printings is encouraged to use them.","PeriodicalId":40675,"journal":{"name":"Slovo","volume":"51 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Slovo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31745/s.72.5","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"HUMANITIES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents and discusses recent advances in Handwritten Text Recognition (HTR) technologies for handwritten and early printed texts in Croatian Glagolitic script. After elaborating on the general principles of training HTR models with respect to the Transkribus platform used for these experiments, the characteristics of the models trained are discussed. Specifically, the models use the Latin script to transcribe the Glagolitic source. In doing so, they transcribe ligatures and resolve abbreviations correctly in the majority of cases. The computed error rate of the models is below 6%, real-world performance seems to be similar. Using the models for pre-transcription can save a great amount of time when editing manuscripts and, thanks to fuzzy search (keyword spotting), even uncorrected HTR transcriptions can be used for various kinds of analysis. The models are publicly available via the Transkribus platform. Every scholar working on Glagolitic manuscripts and early printings is encouraged to use them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本文介绍并讨论了克罗地亚格拉哥利文手写体和早期印刷文本的手写体文本识别(HTR)技术的最新进展。在详细阐述了用于这些实验的Transkribus平台训练HTR模型的一般原则之后,讨论了所训练模型的特点。具体来说,这些模型使用拉丁文字来转录格拉哥利语的来源。在这样做的过程中,他们在大多数情况下正确地转录结束语和解析缩写。模型的计算错误率在6%以下,实际性能似乎相似。使用预转录模型可以在编辑手稿时节省大量的时间,并且由于模糊搜索(关键字定位),即使是未纠正的HTR转录也可以用于各种分析。这些模型可以通过Transkribus平台公开获得。每一位研究格拉哥利文手稿和早期印刷品的学者都被鼓励使用它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Slovo
Slovo HUMANITIES, MULTIDISCIPLINARY-
CiteScore
0.10
自引率
0.00%
发文量
15
期刊最新文献
Firm Review of "Bad Roads" (2020) French claims for compensation of property nationalised by Bulgaria 1944-1960. A foreign policy interpretation. The Archive and Video Games The Paratext of a Manuscript: Mihail Lermontov Self-illustrated The Archives of Communism in the Republic of Moldova: Between Ideology and Political Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1