A surge-less solid-state dc circuit breaker for voltage source converter based HVDC transmission systems

K. Sano, M. Takasaki
{"title":"A surge-less solid-state dc circuit breaker for voltage source converter based HVDC transmission systems","authors":"K. Sano, M. Takasaki","doi":"10.1109/ECCE.2012.6342220","DOIUrl":null,"url":null,"abstract":"This paper proposes a dc circuit breaker for voltage source converter (VSC) based high voltage dc (HVDC) transmission systems. The dc circuit breaker is a solid-state breaker which consists of many semiconductor devices in series with maintaining equal voltage balancing, making it possible to apply to high voltage applications. Moreover, the surge voltage across the circuit breaker is reduced by employing a freewheeling diode. In a system rated at 300 MW in power and 250 kV in dc voltage, conduction loss of the proposed circuit breaker consisting of 4.5 kV devices is estimated at 0.045% of the rated power, which is enough small comparing to the VSCs' power loss. A downscaled HVDC transmission system model rated at 10 kW in power and 360 V in dc voltage was built and a series of experimental results demonstrate the dc fault clearing and rapid restoration of power transmission.","PeriodicalId":6401,"journal":{"name":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"66 1","pages":"4426-4431"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2012.6342220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

This paper proposes a dc circuit breaker for voltage source converter (VSC) based high voltage dc (HVDC) transmission systems. The dc circuit breaker is a solid-state breaker which consists of many semiconductor devices in series with maintaining equal voltage balancing, making it possible to apply to high voltage applications. Moreover, the surge voltage across the circuit breaker is reduced by employing a freewheeling diode. In a system rated at 300 MW in power and 250 kV in dc voltage, conduction loss of the proposed circuit breaker consisting of 4.5 kV devices is estimated at 0.045% of the rated power, which is enough small comparing to the VSCs' power loss. A downscaled HVDC transmission system model rated at 10 kW in power and 360 V in dc voltage was built and a series of experimental results demonstrate the dc fault clearing and rapid restoration of power transmission.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电压源变换器的高压直流输电系统的无浪涌固态直流断路器
本文提出了一种适用于电压源变换器高压直流输电系统的直流断路器。直流断路器是一种固态断路器,它由许多半导体器件串联在一起,保持相等的电压平衡,使其可以应用于高压应用。此外,通过采用自由旋转二极管降低了断路器上的浪涌电压。在额定功率为300 MW,直流电压为250 kV的系统中,所提出的由4.5 kV装置组成的断路器的导通损耗估计为额定功率的0.045%,与vsc的功率损耗相比,这已经足够小了。建立了额定功率为10kw、直流电压为360v的小型直流输电系统模型,并进行了一系列的实验研究,结果表明该系统具有排除直流故障和快速恢复输电的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alternative excitation strategies for a wound rotor synchronous machine drive Design of LCL filters in consideration of parameter variations for grid-connected converters Design, modelling and testing of a high speed induction machine drive A modified Boost topology with simultaneous AC and DC load Optimal zero-vector configuration for space vector modulated AC-DC matrix converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1