M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, Hiroshi Kano
{"title":"A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram","authors":"M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, Hiroshi Kano","doi":"10.1109/IEDM.2005.1609379","DOIUrl":null,"url":null,"abstract":"A novel nonvolatile memory utilizing spin torque transfer magnetization switching (STS), abbreviated spin-RAM hereafter, is presented for the first time. The spin-RAM is programmed by magnetization reversal through an interaction of a spin momentum-torque-transferred current and a magnetic moment of memory layers in magnetic tunnel junctions (MTJs), and therefore an external magnetic field is unnecessary as that for a conventional MRAM. This new programming mode has been accomplished owing to our tailored MTJ, which has an oval shape of 100 times 150 nm. The memory cell is based on a 1-transistor and a 1-MTJ (ITU) structure. The 4kbit spin-RAM was fabricated on a 4 level metal, 0.18 mum CMOS process. In this work, writing speed as high as 2 ns, and a write current as low as 200 muA were successfully demonstrated. It has been proved that spin-RAM possesses outstanding characteristics such as high speed, low power and high scalability for the next generation universal memory","PeriodicalId":13071,"journal":{"name":"IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest.","volume":"248 1","pages":"459-462"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"774","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2005.1609379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 774
Abstract
A novel nonvolatile memory utilizing spin torque transfer magnetization switching (STS), abbreviated spin-RAM hereafter, is presented for the first time. The spin-RAM is programmed by magnetization reversal through an interaction of a spin momentum-torque-transferred current and a magnetic moment of memory layers in magnetic tunnel junctions (MTJs), and therefore an external magnetic field is unnecessary as that for a conventional MRAM. This new programming mode has been accomplished owing to our tailored MTJ, which has an oval shape of 100 times 150 nm. The memory cell is based on a 1-transistor and a 1-MTJ (ITU) structure. The 4kbit spin-RAM was fabricated on a 4 level metal, 0.18 mum CMOS process. In this work, writing speed as high as 2 ns, and a write current as low as 200 muA were successfully demonstrated. It has been proved that spin-RAM possesses outstanding characteristics such as high speed, low power and high scalability for the next generation universal memory