{"title":"Vibration damping in gantry crane systems: Finite horizon optimal control approach","authors":"M. Goubej, Václav Helma","doi":"10.1109/ETFA.2019.8869111","DOIUrl":null,"url":null,"abstract":"The paper deals with the problem of anti-sway control in human-operated gantry cranes. The goal is to design a suitable algorithm aiming at minimization of unwanted transient and residual oscillations of the manipulated load. A finite horizon optimization is adopted for the derivation of an optimal open-loop control strategy. The novelty of the proposed approach comes from the combination of model-based predictive control and zero-vibration input shaping methods. This allows utilizing some key advantages from both fields in terms of performance, robustness, constraints definition and simplicity of implementation. Experimental case study demonstrates the proposed approach and compares it to conventional input-shaping method.","PeriodicalId":6682,"journal":{"name":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"27 1","pages":"877-882"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2019.8869111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The paper deals with the problem of anti-sway control in human-operated gantry cranes. The goal is to design a suitable algorithm aiming at minimization of unwanted transient and residual oscillations of the manipulated load. A finite horizon optimization is adopted for the derivation of an optimal open-loop control strategy. The novelty of the proposed approach comes from the combination of model-based predictive control and zero-vibration input shaping methods. This allows utilizing some key advantages from both fields in terms of performance, robustness, constraints definition and simplicity of implementation. Experimental case study demonstrates the proposed approach and compares it to conventional input-shaping method.