Voltage regulation using a permanent magnet synchronous condenser with a series compensator

P. Hsu, E. Muljadi, Ziping Wu, Wenzhong Gao
{"title":"Voltage regulation using a permanent magnet synchronous condenser with a series compensator","authors":"P. Hsu, E. Muljadi, Ziping Wu, Wenzhong Gao","doi":"10.1109/ECCE.2015.7310481","DOIUrl":null,"url":null,"abstract":"Wind power plant (WPP) is often operated at unity power factor, and the utility host where the WPP connected prefers to regulate the voltage. While this may not be an issue in a stiff grid, the connection to a weak grid can be problematic. This paper explores the advantages of having voltage regulation capability via reactive power control. Another issue in wind power generation is that not all turbines are able to control its reactive power due to technical reason or contractual obligations. A synchronous condenser (SC) using a permanent magnet synchronous generator (PMSG) is proposed for providing necessary reactive power for regulating voltage at a weak grid connection. A PMSG has the advantage of higher efficiency and reliability. Because of its lack of a field winding, a PMSG is typically controlled by a full-power converter, which can be costly. In the proposed system, the reactive power of the SC is controlled by a serially connected compensator operating in a closed-loop configuration. The compensator also damps the PMSG's tendency to oscillate. The compensator's VA rating is only a fraction of the rating of the SC and the PMSG. In this initial investigation, the proposed scheme is shown to be effective by computer simulations.","PeriodicalId":6654,"journal":{"name":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"1 1","pages":"5851-5856"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2015.7310481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Wind power plant (WPP) is often operated at unity power factor, and the utility host where the WPP connected prefers to regulate the voltage. While this may not be an issue in a stiff grid, the connection to a weak grid can be problematic. This paper explores the advantages of having voltage regulation capability via reactive power control. Another issue in wind power generation is that not all turbines are able to control its reactive power due to technical reason or contractual obligations. A synchronous condenser (SC) using a permanent magnet synchronous generator (PMSG) is proposed for providing necessary reactive power for regulating voltage at a weak grid connection. A PMSG has the advantage of higher efficiency and reliability. Because of its lack of a field winding, a PMSG is typically controlled by a full-power converter, which can be costly. In the proposed system, the reactive power of the SC is controlled by a serially connected compensator operating in a closed-loop configuration. The compensator also damps the PMSG's tendency to oscillate. The compensator's VA rating is only a fraction of the rating of the SC and the PMSG. In this initial investigation, the proposed scheme is shown to be effective by computer simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电压调节采用永磁同步电容器与串联补偿器
风力发电厂通常以单位功率因数运行,其所连接的公用事业主机倾向于调节电压。虽然这在刚性网格中可能不是问题,但与弱网格的连接可能会有问题。本文探讨了通过无功控制具有电压调节能力的优点。风力发电的另一个问题是,由于技术原因或合同义务,并非所有涡轮机都能够控制其无功功率。提出了一种利用永磁同步发电机(PMSG)的同步电容器(SC),为弱电网提供必要的无功调压。PMSG具有效率高、可靠性高等优点。由于缺乏磁场绕组,PMSG通常由全功率转换器控制,这可能会很昂贵。在所提出的系统中,SC的无功功率由一个以闭环结构运行的串联补偿器控制。补偿器也抑制了PMSG的振荡倾向。补偿器的VA额定值只是SC和PMSG额定值的一小部分。在初步研究中,通过计算机仿真证明了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy comparison between Gompertz and polynomial based PV models Grid synchronization for a virtual direct power-controlled DFIG wind power system Enhancement on capacitor-voltage-balancing capability of a modular multilevel cascade inverter for medium-voltage synchronous-motor drives State observer for sensorless control of a grid-connected converter equipped with an LCL filter: Direct discrete-time design Multi-tap transformer topologies for improved tolerance against misalignment in inductive power transfer systems for electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1