{"title":"Flavonoids as potential agents for development of multi‐target drugs for covid‐19 treatment: An in silico study","authors":"Nguyễn Thị Thu Hằng, N. Van Phuong","doi":"10.1002/vjch.202100108","DOIUrl":null,"url":null,"abstract":"Abstract COVID‐19 is an infectious disease caused by SARS‐CoV‐2 that is spreading in many countries around the world. In attempts to discover compounds that have an effect on SARS‐CoV‐2, many important molecular targets have been identified, involved in viral infection and replication including spike protein, main protease, capthesin L, helicase, 2‐O‐methyltransferase, endoRNAse. In this study, we would like to identify pot ential flavonoids that could simultaneously inhibit 3CLP, capthesin L, endoRNAse, 2‐O‐methyltransferase, and PLP from a 4389‐flavonoid database using molecular docking, molecular dynamics simulation, pharmacokinetic and toxicity prediction. Out of 4389 compounds, 79 potential flavonoids that could simultaneously inhibit five COVID‐19 molecular targets were identified. Pharmacokinetic and toxicity prediction showed that these compounds were well absorbed from the gastrointestinal tract and safe for human use. These potential compounds were noteworthy during drug research and development for SARS‐CoV‐2 treatment.","PeriodicalId":23525,"journal":{"name":"Vietnam Journal of Chemistry","volume":"23 1","pages":"281 - 296"},"PeriodicalIF":1.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/vjch.202100108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract COVID‐19 is an infectious disease caused by SARS‐CoV‐2 that is spreading in many countries around the world. In attempts to discover compounds that have an effect on SARS‐CoV‐2, many important molecular targets have been identified, involved in viral infection and replication including spike protein, main protease, capthesin L, helicase, 2‐O‐methyltransferase, endoRNAse. In this study, we would like to identify pot ential flavonoids that could simultaneously inhibit 3CLP, capthesin L, endoRNAse, 2‐O‐methyltransferase, and PLP from a 4389‐flavonoid database using molecular docking, molecular dynamics simulation, pharmacokinetic and toxicity prediction. Out of 4389 compounds, 79 potential flavonoids that could simultaneously inhibit five COVID‐19 molecular targets were identified. Pharmacokinetic and toxicity prediction showed that these compounds were well absorbed from the gastrointestinal tract and safe for human use. These potential compounds were noteworthy during drug research and development for SARS‐CoV‐2 treatment.