The Transmission and Toxicity of Phpma Copolymer-Bound Doxorubicin Containing Exosomes Derived from Adherent Two-Dimensional Human Breast Adenocarcinoma Cell Line and Three-Dimensional Spheroids

Kristýna Gunár, L. Kotrchová, M. Filipová, Tereza Krunclová, R. Pola, E. Randárová, T. Etrych, O. Janoušková
{"title":"The Transmission and Toxicity of Phpma Copolymer-Bound Doxorubicin Containing Exosomes Derived from Adherent Two-Dimensional Human Breast Adenocarcinoma Cell Line and Three-Dimensional Spheroids","authors":"Kristýna Gunár, L. Kotrchová, M. Filipová, Tereza Krunclová, R. Pola, E. Randárová, T. Etrych, O. Janoušková","doi":"10.2139/ssrn.3692012","DOIUrl":null,"url":null,"abstract":"Exosomes are endosomally-derived vesicles. Their composition is significantly affected by physiological state of the donor cells and can reflect changes in the cell microenvironment as well as of the whole body. Exosomes can manipulate local and systemic environment to influence cancer progression and dissemination and also modulate immune response. Moreover, exosomes have been investigated as possible transmission nanocarriers for therapeutics. In this study, exosome loading was achieved by incubation of free doxorubicin (DOX) and DOX bound to N -(2-hydroxypropyl) methacrylamide (HPMA)-based copolymers (pHPMA) with an adherent human breast adenocarcinoma cell line and its derived spheroids. Both free and p(HPMA)-bound DOX were successfully loaded into exosomes with different loading efficiencies. Spheroids secreted significantly more exosomes than adherent cells. These exosomes differed in abundance of their exosomal markers. The adherent cell line showed a decreased viability after treatment with free DOX or pHPMA bound-DOX-loaded exosomes, confirming the successful transmission of both, free cancerostatics and polymer bound cancerostatics by exosomes. To our knowledge, this is the first proof of pHPMA-drug conjugates secretion by extracellular vesicles, providing a new perspective on the transmission of drug/polymeric drugs in tumor tissue via exosomes. Interestingly, results obtained within the manuscript contribute to the explanation of high therapeutic activity of pH-sensitive polymer-DOX conjugates, which we suppose, is based on the exosome-based cell-to-cell delivery within the tumor tissue after the passive accumulation of the polymer-drug system.","PeriodicalId":8795,"journal":{"name":"Biochemistry eJournal","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3692012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Exosomes are endosomally-derived vesicles. Their composition is significantly affected by physiological state of the donor cells and can reflect changes in the cell microenvironment as well as of the whole body. Exosomes can manipulate local and systemic environment to influence cancer progression and dissemination and also modulate immune response. Moreover, exosomes have been investigated as possible transmission nanocarriers for therapeutics. In this study, exosome loading was achieved by incubation of free doxorubicin (DOX) and DOX bound to N -(2-hydroxypropyl) methacrylamide (HPMA)-based copolymers (pHPMA) with an adherent human breast adenocarcinoma cell line and its derived spheroids. Both free and p(HPMA)-bound DOX were successfully loaded into exosomes with different loading efficiencies. Spheroids secreted significantly more exosomes than adherent cells. These exosomes differed in abundance of their exosomal markers. The adherent cell line showed a decreased viability after treatment with free DOX or pHPMA bound-DOX-loaded exosomes, confirming the successful transmission of both, free cancerostatics and polymer bound cancerostatics by exosomes. To our knowledge, this is the first proof of pHPMA-drug conjugates secretion by extracellular vesicles, providing a new perspective on the transmission of drug/polymeric drugs in tumor tissue via exosomes. Interestingly, results obtained within the manuscript contribute to the explanation of high therapeutic activity of pH-sensitive polymer-DOX conjugates, which we suppose, is based on the exosome-based cell-to-cell delivery within the tumor tissue after the passive accumulation of the polymer-drug system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粘附二维人乳腺腺癌细胞系和三维球体衍生的Phpma共聚物结合含阿霉素的外泌体的传播和毒性
外泌体是内体细胞衍生的囊泡。它们的组成受供体细胞生理状态的显著影响,可以反映细胞微环境以及整个机体的变化。外泌体可以操纵局部和全身环境,影响癌症的进展和传播,并调节免疫反应。此外,外泌体已被研究作为治疗药物的可能传播纳米载体。在这项研究中,外泌体负载是通过将游离阿霉素(DOX)和DOX结合到N -(2-羟丙基)甲基丙烯酰胺(HPMA)基共聚物(pHPMA)与贴壁的人乳腺腺癌细胞系及其衍生球体孵育来实现的。游离DOX和p(HPMA)结合DOX均以不同的装载效率成功装载到外泌体中。球状细胞分泌的外泌体明显多于贴壁细胞。这些外泌体的外泌体标记物的丰度不同。用游离DOX或pHPMA结合-DOX负载的外泌体处理后,贴壁细胞系的活力下降,证实了外泌体成功传递了游离抗癌剂和聚合物结合抗癌剂。据我们所知,这是phpma -药物偶联物通过细胞外囊泡分泌的第一个证据,为药物/聚合物药物通过外泌体在肿瘤组织中的传播提供了新的视角。有趣的是,论文中获得的结果有助于解释ph敏感聚合物- dox偶联物的高治疗活性,我们认为这是基于聚合物药物系统被动积累后肿瘤组织内基于外泌体的细胞间传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Possibility of teaching Bacillus subtilis ethylene glycol utilization The Study of Carboxylic Acids in Flowers and Leaves of Veronica Chamaedrys L. and Veronica Teucrium L. Interstellar Formation of Biorelevant Pyruvic Acid (CH 3COCOOH) The Transmission and Toxicity of Phpma Copolymer-Bound Doxorubicin Containing Exosomes Derived from Adherent Two-Dimensional Human Breast Adenocarcinoma Cell Line and Three-Dimensional Spheroids Polymerization-Driven Hierarchical Co-Assembly of Micelles for Access to Mesoporous Hollow Metal Coordination Bio-Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1