A. Kawasumi, A. Suzuki, H. Hatada, Y. Takeyama, O. Hirabayashi, Y. Kameda, T. Hamano, N. Otsuka
{"title":"A 1.8 V 18 Mb DDR CMOS SRAM with power reduction techniques","authors":"A. Kawasumi, A. Suzuki, H. Hatada, Y. Takeyama, O. Hirabayashi, Y. Kameda, T. Hamano, N. Otsuka","doi":"10.1109/VLSIC.2000.852855","DOIUrl":null,"url":null,"abstract":"In view of the remarkable progress in MPU performance, improvement in the data rate of L2 cache SRAMs is desirable to maximize system performance. As a solution, Double-Data-Rate (DDR) SRAMs, which can realize an I/O frequency of up to twice that of conventional Single-Data-Rate (SDR) SRAMs, have been reported. Increase in operation-current due to higher operation frequency causes severe power-line noise and heating. Therefore, reduction of operation-current is an important issue in designing high-speed SRAMs. In order to realize both high-frequency operation and power reduction, we propose new sense circuitry and a bit-line load scheme.","PeriodicalId":6361,"journal":{"name":"2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103)","volume":"66 1","pages":"72-73"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2000.852855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In view of the remarkable progress in MPU performance, improvement in the data rate of L2 cache SRAMs is desirable to maximize system performance. As a solution, Double-Data-Rate (DDR) SRAMs, which can realize an I/O frequency of up to twice that of conventional Single-Data-Rate (SDR) SRAMs, have been reported. Increase in operation-current due to higher operation frequency causes severe power-line noise and heating. Therefore, reduction of operation-current is an important issue in designing high-speed SRAMs. In order to realize both high-frequency operation and power reduction, we propose new sense circuitry and a bit-line load scheme.