S. Mathew, Sudhir K. Satpathy, Vikram B. Suresh, M. Anders, Himanshu Kaul, A. Agarwal, S. Hsu, Gregory K. Chen, R. Krishnamurthy, V. De
{"title":"A 4fJ/bit delay-hardened physically unclonable function circuit with selective bit destabilization in 14nm tri-gate CMOS","authors":"S. Mathew, Sudhir K. Satpathy, Vikram B. Suresh, M. Anders, Himanshu Kaul, A. Agarwal, S. Hsu, Gregory K. Chen, R. Krishnamurthy, V. De","doi":"10.1109/VLSIC.2016.7573554","DOIUrl":null,"url":null,"abstract":"A 1024-bit delay-hardened physically unclonable function (PUF) array is fabricated in 14nm tri-gate CMOS, targeted for on-die secure generation of a full-entropy 128bit key. Differential clock delay injection, selective destabilization of unstable bits and temporal-majority-voting (TMV) based winnowing enable 1.7× higher post-burn-in BER improvement, 50% reduction in dark-bit induced bit-errors and worst-case BER of 1.46%. Spectral analysis of unstable PUF bits show significant 1/f noise impacts below 500MHz. In-situ field aging with write feedback improves bit stability by up to 48%.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"20 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
A 1024-bit delay-hardened physically unclonable function (PUF) array is fabricated in 14nm tri-gate CMOS, targeted for on-die secure generation of a full-entropy 128bit key. Differential clock delay injection, selective destabilization of unstable bits and temporal-majority-voting (TMV) based winnowing enable 1.7× higher post-burn-in BER improvement, 50% reduction in dark-bit induced bit-errors and worst-case BER of 1.46%. Spectral analysis of unstable PUF bits show significant 1/f noise impacts below 500MHz. In-situ field aging with write feedback improves bit stability by up to 48%.