Hyun-jin Cho, F. Nemati, R. Roy, R. Gupta, K. Yang, M. Ershov, S. Banna, M. Tarabbia, C. Sailing, D. Hayes, A. Mittal, S. Robins
{"title":"A novel capacitor-less DRAM cell using thin capacitively-coupled thyristor (TCCT)","authors":"Hyun-jin Cho, F. Nemati, R. Roy, R. Gupta, K. Yang, M. Ershov, S. Banna, M. Tarabbia, C. Sailing, D. Hayes, A. Mittal, S. Robins","doi":"10.1109/IEDM.2005.1609337","DOIUrl":null,"url":null,"abstract":"A capacitor-less DRAM cell using a thin capacitively-coupled thyristor (TCCT DRAM) is introduced. Experimental results from unit memory cell fabricated in a 130nm SOI logic technology demonstrate Ion/Ioff ratio of 107, non-destructive read; write speed less than 2ns at 125C, and solid retention characteristics. These cell characteristics combined with a small cell area (as low as 9F2) and simple process integration make TCCT DRAM a suitable candidate for high-performance high-density embedded or standalone memory applications","PeriodicalId":13071,"journal":{"name":"IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest.","volume":"77 1","pages":"311-314"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2005.1609337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
A capacitor-less DRAM cell using a thin capacitively-coupled thyristor (TCCT DRAM) is introduced. Experimental results from unit memory cell fabricated in a 130nm SOI logic technology demonstrate Ion/Ioff ratio of 107, non-destructive read; write speed less than 2ns at 125C, and solid retention characteristics. These cell characteristics combined with a small cell area (as low as 9F2) and simple process integration make TCCT DRAM a suitable candidate for high-performance high-density embedded or standalone memory applications