{"title":"Vortex Identification Study of a Turbulent Cavity Flow","authors":"K. Hammad","doi":"10.1115/FEDSM2018-83048","DOIUrl":null,"url":null,"abstract":"A combined vortex identification and Proper Orthogonal Decomposition (POD) analysis is applied to high-resolution Particle Image Velocimetry (PIV) measurements of a turbulent flow past an open shallow cavity. The PIV measurements, at a cavity depth based Reynolds number of 42,000, capture the flow structure and turbulence, upstream, over, and downstream an open cavity having a length-to-depth ratio of four. Vorticity and second invariant Q of the velocity gradient tensor analysis are used to identify the vortical structures and the overall flow field features. POD analysis is applied to the vorticity and Q fields to identify the most energetic vortical structures and flow features. The results demonstrate the superiority of the combined Q-criterion and POD analysis in identifying distinct vortical structures and their evolution.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A combined vortex identification and Proper Orthogonal Decomposition (POD) analysis is applied to high-resolution Particle Image Velocimetry (PIV) measurements of a turbulent flow past an open shallow cavity. The PIV measurements, at a cavity depth based Reynolds number of 42,000, capture the flow structure and turbulence, upstream, over, and downstream an open cavity having a length-to-depth ratio of four. Vorticity and second invariant Q of the velocity gradient tensor analysis are used to identify the vortical structures and the overall flow field features. POD analysis is applied to the vorticity and Q fields to identify the most energetic vortical structures and flow features. The results demonstrate the superiority of the combined Q-criterion and POD analysis in identifying distinct vortical structures and their evolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
湍流空腔流动的涡识别研究
将涡旋识别与适当正交分解(POD)相结合的方法应用于高分辨率粒子图像测速(PIV)测量中。在基于空腔深度的雷诺数为42000的情况下,PIV测量捕获了一个长深比为4的开放空腔的上游、上方和下游的流动结构和湍流。利用速度梯度张量分析的涡度和二阶不变量Q来识别旋涡结构和整体流场特征。将POD分析应用于涡度场和Q场,以识别最具能量的涡结构和流动特征。结果表明,结合q准则和POD分析在识别不同的涡状结构及其演化方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Investigation of a Flapping Motion Downstream of a Backward Facing Step Experimental Study on Modeled Caudal Fins Propelling by Elastic Deformation Simulation of Coalescence and Breakup of Dispersed Water Droplets in Continuous Oil Phase Multi-Objective Optimization on Inlet Pipe of a Vertical Inline Pump Based on Genetic Algorithm and Artificial Neural Network Turbulent Flow Characteristics Over Offset Wall Confined Columns in a Channel at Low Reynolds Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1