X.Y. Zhang, K. Banerjee, A. Amerasekera, V. Gupta, Zhiping Yu, R. Dutton
{"title":"Process and layout dependent substrate resistance modeling for deep sub-micron ESD protection devices","authors":"X.Y. Zhang, K. Banerjee, A. Amerasekera, V. Gupta, Zhiping Yu, R. Dutton","doi":"10.1109/RELPHY.2000.843930","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a new methodology for bringing accurate substrate resistance modeling into circuit level ESD simulation. The impact of layout and process variations on the effective substrate resistance of deep sub-micron ESD devices is analyzed and modeled using a quasi mixed-mode approach. The substrate resistance simulated by this method shows good agreement with the values extracted from experimental data. This technique can be employed to simulate turn-on characteristics of ESD protection devices and determine the impact of process and layout variations on their reliability before fabrication of the actual devices.","PeriodicalId":6387,"journal":{"name":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","volume":"49 1","pages":"295-303"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2000.843930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
This paper demonstrates a new methodology for bringing accurate substrate resistance modeling into circuit level ESD simulation. The impact of layout and process variations on the effective substrate resistance of deep sub-micron ESD devices is analyzed and modeled using a quasi mixed-mode approach. The substrate resistance simulated by this method shows good agreement with the values extracted from experimental data. This technique can be employed to simulate turn-on characteristics of ESD protection devices and determine the impact of process and layout variations on their reliability before fabrication of the actual devices.