Rheology assessment of mortar materials for additive manufacturing

Ana Pedrosa, Florindo Gaspar
{"title":"Rheology assessment of mortar materials for additive manufacturing","authors":"Ana Pedrosa, Florindo Gaspar","doi":"10.2174/2666145417666230801093723","DOIUrl":null,"url":null,"abstract":"\n\nThis review article discusses the relevant rheological tests to evaluate the properties of compositions applied to the 3D printing of concrete (3DCP). These materials must rapidly develop rigidity and resistance, avoiding the collapse of the printed structure, with suitable buildability and other state properties, such as extrudability. A good balance must be maintained between properties and rheological parameters, such as yield stress and viscosity. Cohesion, Young's modulus, and thixotropy are also among the parameters used in these evaluations. The rheological tests addressed are the rheometer, direct shear test, uniaxial unconfined compression test, and penetration test. Their limitations must be taken into account to obtain accurate values of the rheological parameters. It was found that the most used test is the rheometer, and the test that needs to be further studied is the penetration test. Hence, it is recommended to search for a more expeditious method related to the rheological assessment to facilitate obtaining the associated parameters in a simple way.\n","PeriodicalId":36699,"journal":{"name":"Current Materials Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2666145417666230801093723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This review article discusses the relevant rheological tests to evaluate the properties of compositions applied to the 3D printing of concrete (3DCP). These materials must rapidly develop rigidity and resistance, avoiding the collapse of the printed structure, with suitable buildability and other state properties, such as extrudability. A good balance must be maintained between properties and rheological parameters, such as yield stress and viscosity. Cohesion, Young's modulus, and thixotropy are also among the parameters used in these evaluations. The rheological tests addressed are the rheometer, direct shear test, uniaxial unconfined compression test, and penetration test. Their limitations must be taken into account to obtain accurate values of the rheological parameters. It was found that the most used test is the rheometer, and the test that needs to be further studied is the penetration test. Hence, it is recommended to search for a more expeditious method related to the rheological assessment to facilitate obtaining the associated parameters in a simple way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造砂浆材料流变学评价
本文综述了用于混凝土3D打印(3DCP)的组合物性能评价的相关流变学试验。这些材料必须迅速发展刚性和阻力,避免印刷结构的崩溃,具有适当的可建造性和其他状态属性,如可挤压性。必须在性能和流变参数(如屈服应力和粘度)之间保持良好的平衡。黏聚力、杨氏模量和触变性也是这些评价中使用的参数之一。流变试验包括流变仪试验、直接剪切试验、单轴无侧限压缩试验和渗透试验。为了获得准确的流变参数值,必须考虑到它们的局限性。研究发现,目前使用最多的试验是流变仪试验,需要进一步研究的试验是渗透试验。因此,建议寻找一种与流变评估相关的更快速的方法,以便以简单的方式获得相关参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Materials Science
Current Materials Science Materials Science-Materials Science (all)
CiteScore
0.80
自引率
0.00%
发文量
38
期刊最新文献
An Experimental Study on Compressive Properties of Composite Fiber Geopolymer Concrete Mechanical Properties of Fly Ash Geopolymer with Macadamia Nutshell Aggregates Synthesis of Form-stable Phase Change Materials for Application in Lunch Box to Keep the Food Warm Potential Biomolecule Fisetin: Molecular and Pharmacological Perspectives Investigating Thermal Decomposition Kinetics and Thermodynamic Parameters of Hydroxyl-Terminated Polybutadiene-based Energetic Composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1