{"title":"An Approximate Symmetry Clock Tree Design with Routing Topology Prediction","authors":"Meng Liu, Zhiye Zhang, Jiabao Wen, Yunpeng Jia","doi":"10.1109/MWSCAS47672.2021.9531772","DOIUrl":null,"url":null,"abstract":"With the technology scaling, a simple clock tree can hardly handle the complex situations in a modern System-on-Chip (SoC), such as thousands of clock sinks, multiple process, voltage and temperature (PVT) corners, and several clock domains. To transform a single tree problem into sub-tree problems, the hybrid clock tree which consists of a top-level tree and several local trees is becoming the promising structure for timing closure due to its flexible timing characteristics. Top-level tree is designed as strict symmetrical structure with topological symmetry and symmetric overhead of wire resources, since the symmetry structure can help achieve zero-skew in theory. In our work, we present an approximate symmetry tree as the optimized top-level tree with the methodology of clustering and topology reconstruction. Considering a skew value bound, the wirelength cost is much reduced. The strategy for building our proposed tree is based on a machine learning-based predictor which can realize the fast analysis of the potential possibilities of routing patterns. Runtime for the tuning process can be much saved compared with traditional simulation method.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"9 1","pages":"92-96"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With the technology scaling, a simple clock tree can hardly handle the complex situations in a modern System-on-Chip (SoC), such as thousands of clock sinks, multiple process, voltage and temperature (PVT) corners, and several clock domains. To transform a single tree problem into sub-tree problems, the hybrid clock tree which consists of a top-level tree and several local trees is becoming the promising structure for timing closure due to its flexible timing characteristics. Top-level tree is designed as strict symmetrical structure with topological symmetry and symmetric overhead of wire resources, since the symmetry structure can help achieve zero-skew in theory. In our work, we present an approximate symmetry tree as the optimized top-level tree with the methodology of clustering and topology reconstruction. Considering a skew value bound, the wirelength cost is much reduced. The strategy for building our proposed tree is based on a machine learning-based predictor which can realize the fast analysis of the potential possibilities of routing patterns. Runtime for the tuning process can be much saved compared with traditional simulation method.